TU Darmstadt / ULB / TUbiblio

Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains

Schulz, Claudia ; Meyer, Christian M. ; Kiesewetter, Jan ; Sailer, Michael ; Bauer, Elisabeth ; Fischer, Martin R. ; Fischer, Frank ; Gurevych, Iryna (2019)
Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains.
The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Florence, Italy (28.07.2019-02.08.2019)
doi: 10.18653/v1/P19-1265
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is particularly hard for both humans and machines: the segmentation and classification of epistemic activities in diagnostic reasoning texts. We create and publish a new dataset covering two domains and carefully analyse the suggested annotations. We find that suggestions have positive effects on annotation speed and performance, while not introducing noteworthy biases. Envisioning suggestion models that improve with newly annotated texts, we contrast methods for continuous model adjustment and suggest the most effective setup for suggestions in future expert tasks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Schulz, Claudia ; Meyer, Christian M. ; Kiesewetter, Jan ; Sailer, Michael ; Bauer, Elisabeth ; Fischer, Martin R. ; Fischer, Frank ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains
Sprache: Englisch
Publikationsjahr: 27 Mai 2019
Ort: Florence, Italy
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Veranstaltungstitel: The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019)
Veranstaltungsort: Florence, Italy
Veranstaltungsdatum: 28.07.2019-02.08.2019
DOI: 10.18653/v1/P19-1265
URL / URN: https://aclanthology.org/P19-1265
Zugehörige Links:
Kurzbeschreibung (Abstract):

Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is particularly hard for both humans and machines: the segmentation and classification of epistemic activities in diagnostic reasoning texts. We create and publish a new dataset covering two domains and carefully analyse the suggested annotations. We find that suggestions have positive effects on annotation speed and performance, while not introducing noteworthy biases. Envisioning suggestion models that improve with newly annotated texts, we contrast methods for continuous model adjustment and suggest the most effective setup for suggestions in future expert tasks.

Freie Schlagworte: UKP_p_FAMULUS
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 18 Sep 2019 12:15
Letzte Änderung: 05 Jun 2024 08:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen