TU Darmstadt / ULB / TUbiblio

Machine Learning Algorithms in Machining: A Guideline for Efficient Algorithm Selection

Ziegenbein, Amina ; Stanula, Patrick ; Metternich, Joachim ; Abele, Eberhard
Hrsg.: Schmitt, Robert ; Schuh, Günther (2018)
Machine Learning Algorithms in Machining: A Guideline for Efficient Algorithm Selection.
In: Advances in Production Research, Proceedings of the 8th Congress of the German Academic Association for Production Technology (WGP)
doi: 10.1007/978-3-030-03451-1₂₉
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

The manufacturing industry has difficulties with the question of how advanced analytics, can be integrated into production. This paper describes the algorithm selection step of an overall methodology for the systematic implementation of data mining projects in production. This is intended to provide users with a guideline to what a basic procedure may look like and what steps should be considered. First, this procedure is explained, which is then performed and illustrated on an application of high-frequency machine data.

Typ des Eintrags: Buchkapitel
Erschienen: 2018
Herausgeber: Schmitt, Robert ; Schuh, Günther
Autor(en): Ziegenbein, Amina ; Stanula, Patrick ; Metternich, Joachim ; Abele, Eberhard
Art des Eintrags: Bibliographie
Titel: Machine Learning Algorithms in Machining: A Guideline for Efficient Algorithm Selection
Sprache: Englisch
Publikationsjahr: November 2018
Verlag: Springer Cham
Buchtitel: Advances in Production Research, Proceedings of the 8th Congress of the German Academic Association for Production Technology (WGP)
DOI: 10.1007/978-3-030-03451-1₂₉
URL / URN: https://link.springer.com/chapter/10.1007/978-3-030-03451-1_...
Kurzbeschreibung (Abstract):

The manufacturing industry has difficulties with the question of how advanced analytics, can be integrated into production. This paper describes the algorithm selection step of an overall methodology for the systematic implementation of data mining projects in production. This is intended to provide users with a guideline to what a basic procedure may look like and what steps should be considered. First, this procedure is explained, which is then performed and illustrated on an application of high-frequency machine data.

Freie Schlagworte: Machine tool, Predictive model, Quality assurance
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Management industrieller Produktion
Hinterlegungsdatum: 24 Apr 2019 09:33
Letzte Änderung: 24 Apr 2019 09:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen