TU Darmstadt / ULB / TUbiblio

A Software Tool for Planning and Evaluation of Non-Linear Trajectories for Minimally Invasive Lateral Skull Base Surgery

Fauser, Johannes ; Stenin, Igor ; Kristin, J. ; Klenzner, Thomas ; Schipper, Jörg ; Sakas, Georgios (2016)
A Software Tool for Planning and Evaluation of Non-Linear Trajectories for Minimally Invasive Lateral Skull Base Surgery.
Curac 2016.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The research project MUKNO II investigates the feasibility of non-linear access paths for minimally invasive lateral skull base surgery to optimize safety distance to risk structures and direction of insertion vectors. For this purpose a new surgical planning tool for manual as well as automatic nonholonomic path planning was developed. In ten 3D surface models of the temporal bone region trajectories to specific target points were manually created. The distance to critical structures and the curvature were evaluated along the course of these trajectories. First experiments with automatic nonholonomic planning showed the applicability of the implemented motion planner in the complex dense environment.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Fauser, Johannes ; Stenin, Igor ; Kristin, J. ; Klenzner, Thomas ; Schipper, Jörg ; Sakas, Georgios
Art des Eintrags: Bibliographie
Titel: A Software Tool for Planning and Evaluation of Non-Linear Trajectories for Minimally Invasive Lateral Skull Base Surgery
Sprache: Englisch
Publikationsjahr: 2016
Veranstaltungstitel: Curac 2016
Kurzbeschreibung (Abstract):

The research project MUKNO II investigates the feasibility of non-linear access paths for minimally invasive lateral skull base surgery to optimize safety distance to risk structures and direction of insertion vectors. For this purpose a new surgical planning tool for manual as well as automatic nonholonomic path planning was developed. In ten 3D surface models of the temporal bone region trajectories to specific target points were manually created. The distance to critical structures and the curvature were evaluated along the course of these trajectories. First experiments with automatic nonholonomic planning showed the applicability of the implemented motion planner in the complex dense environment.

Freie Schlagworte: Forschungsgruppe Medical Computing (MECO), Robot assisted surgery, Minimally invasive surgery, Path planning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 08 Mai 2019 06:26
Letzte Änderung: 08 Mai 2019 06:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen