TU Darmstadt / ULB / TUbiblio

A Textual Recommender System for Clinical Data

Hummel, P. A. ; Jäkel, F. ; Lange, S. ; Mertelsmann, R.
Hrsg.: Cox, M. ; Funk, P. ; Begum, S. (2018)
A Textual Recommender System for Clinical Data.
International Conference on Case-Based Reasoning 2018.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

When faced with an exceptional clinical case, doctors like to review information about similar patients to guide their decision-making. Retrieving relevant cases, however, is a hard and time-consuming task: Hospital databases of free-text physician letters provide a rich resource of information but are usually only searchable with string-matching methods. Here, we present a recommender system that automatically finds physician letters similar to a specified reference letter using an information retrieval procedure. We use a small-scale, prototypical dataset to compare the system’s recommendations with physicians’ similarity judgments of letter pairs in a psychological experiment. The results show that the recommender system captures expert intuitions about letter similarity well and is usable for practical applications.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Herausgeber: Cox, M. ; Funk, P. ; Begum, S.
Autor(en): Hummel, P. A. ; Jäkel, F. ; Lange, S. ; Mertelsmann, R.
Art des Eintrags: Bibliographie
Titel: A Textual Recommender System for Clinical Data
Sprache: Englisch
Publikationsjahr: 15 Oktober 2018
Ort: Sitockholm (Sweden)
(Heft-)Nummer: 11156
Reihe: Lecture Notes in Computer Science
Veranstaltungstitel: International Conference on Case-Based Reasoning 2018
URL / URN: https://link.springer.com/chapter/10.1007/978-3-030-0108-2_1...
Kurzbeschreibung (Abstract):

When faced with an exceptional clinical case, doctors like to review information about similar patients to guide their decision-making. Retrieving relevant cases, however, is a hard and time-consuming task: Hospital databases of free-text physician letters provide a rich resource of information but are usually only searchable with string-matching methods. Here, we present a recommender system that automatically finds physician letters similar to a specified reference letter using an information retrieval procedure. We use a small-scale, prototypical dataset to compare the system’s recommendations with physicians’ similarity judgments of letter pairs in a psychological experiment. The results show that the recommender system captures expert intuitions about letter similarity well and is usable for practical applications.

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
03 Fachbereich Humanwissenschaften > Institut für Psychologie > Modelle höherer Kognition
Hinterlegungsdatum: 22 Okt 2018 10:35
Letzte Änderung: 08 Okt 2020 12:50
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen