Oehlke, Jonathan (2015)
Umsetzung und Optimierung robotischer Hüpfbewegungen mit bio-inspirierter Virtual Model Control.
Technische Universität Darmstadt
Masterarbeit, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Biological inspired templates can help to control complex robotic movements. In this thesis a control strategy, enabling hopping motions of a segmented robotic leg, is developed. The control bases on the spring loaded inverse pendulum (SLIP) model, which can describe the courses of displacement of the center of mass and the ground reaction force during human or animal hopping motions. To use this template as a calculation model for desired control values a method called virtual model control (VMC) is used. VMC implements virtual components in real structures to design a desired behavior. Existing actuators of the real system are controlled in a manner to mimic the effects, the virtual components would have on the system. The virtual component used in this work is a spring with certain properties. Like in the role model, the SLIP template, the spring is virtually attached between hip and foot of the robotic leg. The knee is the only actuated part of the structure. Through the control of the knee torque the effects of the virtual spring are mimicked. The used test-bed necessitates it to adjust the developed control laws for the compensation of losses. Different methods for the calculation of a variable virtual spring stiffness have been developed, resulting in stable hopping motions of the robotic leg in the used test-bed. The resulting control strategy does not need a feedback loop of the controlled parameter and is therefore a kind of a feed-forward approach. The possibility of an overlaid force-feedback control has been examined and the limits of this method have been estimated.
Typ des Eintrags: | Masterarbeit |
---|---|
Erschienen: | 2015 |
Autor(en): | Oehlke, Jonathan |
Art des Eintrags: | Erstveröffentlichung |
Titel: | Umsetzung und Optimierung robotischer Hüpfbewegungen mit bio-inspirierter Virtual Model Control |
Sprache: | Englisch |
Referenten: | Beckerle, Dr.-Ing. Philipp ; Sharbafi, Dr. Maziar Ahmad |
Publikationsjahr: | 13 Oktober 2015 |
Ort: | Darmstadt |
Datum der mündlichen Prüfung: | 2015 |
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/7678 |
Kurzbeschreibung (Abstract): | Biological inspired templates can help to control complex robotic movements. In this thesis a control strategy, enabling hopping motions of a segmented robotic leg, is developed. The control bases on the spring loaded inverse pendulum (SLIP) model, which can describe the courses of displacement of the center of mass and the ground reaction force during human or animal hopping motions. To use this template as a calculation model for desired control values a method called virtual model control (VMC) is used. VMC implements virtual components in real structures to design a desired behavior. Existing actuators of the real system are controlled in a manner to mimic the effects, the virtual components would have on the system. The virtual component used in this work is a spring with certain properties. Like in the role model, the SLIP template, the spring is virtually attached between hip and foot of the robotic leg. The knee is the only actuated part of the structure. Through the control of the knee torque the effects of the virtual spring are mimicked. The used test-bed necessitates it to adjust the developed control laws for the compensation of losses. Different methods for the calculation of a variable virtual spring stiffness have been developed, resulting in stable hopping motions of the robotic leg in the used test-bed. The resulting control strategy does not need a feedback loop of the controlled parameter and is therefore a kind of a feed-forward approach. The possibility of an overlaid force-feedback control has been examined and the limits of this method have been estimated. |
URN: | urn:nbn:de:tuda-tuprints-76787 |
Zusätzliche Informationen: | Realization and optimization of robotic hopping motions using bio-inspired virtual model control |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Mechatronische Systeme im Maschinenbau (IMS) 03 Fachbereich Humanwissenschaften 03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft 03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft > Sportbiomechanik |
Hinterlegungsdatum: | 19 Aug 2018 19:55 |
Letzte Änderung: | 10 Dez 2018 12:35 |
PPN: | |
Referenten: | Beckerle, Dr.-Ing. Philipp ; Sharbafi, Dr. Maziar Ahmad |
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 2015 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |