TU Darmstadt / ULB / TUbiblio

Assisting Movement Training and Execution With Visual and Haptic Feedback

Ewerton, Marco ; Rother, David ; Weimar, Jakob ; Kollegger, Gerrit ; Wiemeyer, Josef ; Peters, Jan ; Maeda, Guilherme (2018)
Assisting Movement Training and Execution With Visual and Haptic Feedback.
In: Frontiers in Neurorobotics, 2018, 12
doi: 10.3389/fnbot.2018.00024
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In the practice of motor skills in general, errors in the execution of movements may go unnoticed when a human instructor is not available. In this case, a computer system or robotic device able to detectmovement errors and propose corrections would be of great help. This paper addresses the problem of how to detect such execution errors and how to provide feedback to the human to correct his/her motor skill using a general, principled methodology based on imitation learning. The core idea is to compare the observed skill with a probabilistic model learned from expert demonstrations. The intensity of the feedback is regulated by the likelihood of the model given the observed skill. Based on demonstrations, our system can, for example, detect errors in the writing of characters with multiple strokes. Moreover, by using a haptic device, the Haption Virtuose 6D, we demonstrate a method to generate haptic feedback based on a distribution over trajectories, which could be used as an auxiliary means of communication between an instructor and an apprentice. Additionally, given a performance measurement, the haptic device can help the human discover and performbettermovements to solve a given task. In this case, the human first tries a few times to solve the task without assistance. Our framework, in turn, uses a reinforcement learning algorithm to compute haptic feedback, which guides the human toward better solutions.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Ewerton, Marco ; Rother, David ; Weimar, Jakob ; Kollegger, Gerrit ; Wiemeyer, Josef ; Peters, Jan ; Maeda, Guilherme
Art des Eintrags: Zweitveröffentlichung
Titel: Assisting Movement Training and Execution With Visual and Haptic Feedback
Sprache: Englisch
Publikationsjahr: 2018
Publikationsdatum der Erstveröffentlichung: 2018
Verlag: Frontiers
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Neurorobotics
Jahrgang/Volume einer Zeitschrift: 12
DOI: 10.3389/fnbot.2018.00024
URL / URN: https://doi.org/10.3389/fnbot.2018.00024
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

In the practice of motor skills in general, errors in the execution of movements may go unnoticed when a human instructor is not available. In this case, a computer system or robotic device able to detectmovement errors and propose corrections would be of great help. This paper addresses the problem of how to detect such execution errors and how to provide feedback to the human to correct his/her motor skill using a general, principled methodology based on imitation learning. The core idea is to compare the observed skill with a probabilistic model learned from expert demonstrations. The intensity of the feedback is regulated by the likelihood of the model given the observed skill. Based on demonstrations, our system can, for example, detect errors in the writing of characters with multiple strokes. Moreover, by using a haptic device, the Haption Virtuose 6D, we demonstrate a method to generate haptic feedback based on a distribution over trajectories, which could be used as an auxiliary means of communication between an instructor and an apprentice. Additionally, given a performance measurement, the haptic device can help the human discover and performbettermovements to solve a given task. In this case, the human first tries a few times to solve the task without assistance. Our framework, in turn, uses a reinforcement learning algorithm to compute haptic feedback, which guides the human toward better solutions.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-75662
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
Hinterlegungsdatum: 15 Jul 2018 19:57
Letzte Änderung: 05 Dez 2023 09:11
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen