TU Darmstadt / ULB / TUbiblio

How does Bayesian reverse-engineering work?

Zednik, C. ; Jäkel, F. (2014)
How does Bayesian reverse-engineering work?
Proceedings of the 36th Annual Conference of the Cognitive Science Society / ed. by P. Bello ; M. Guarini ; M. McShane ; B. Scasselati. Austin, TX
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Bayesian models of cognition and behavior are particularly promising when they are used in reverse-engineering explanations: explanations that descend from the computational level of analysis to the algorithmic and implementation levels. Unfortunately, it remains unclear exactly how Bayesian models constrain and influence these lower levels of analysis. In this paper, we review and reject two widespread views of Bayesian reverse-engineering, and propose an alternative view according to which Bayesian models at the computational level impose pragmatic constraints that facilitate the generation of testable hypotheses at the algorithmic and implementation levels.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Zednik, C. ; Jäkel, F.
Art des Eintrags: Bibliographie
Titel: How does Bayesian reverse-engineering work?
Sprache: Englisch
Publikationsjahr: 2014
Ort: Austin, TX
Verlag: Cognitive Science Society
Veranstaltungstitel: Proceedings of the 36th Annual Conference of the Cognitive Science Society / ed. by P. Bello ; M. Guarini ; M. McShane ; B. Scasselati
Veranstaltungsort: Austin, TX
URL / URN: https://mindmodeling.org/cogsci2014/papers/123/paper123.pdf
Kurzbeschreibung (Abstract):

Bayesian models of cognition and behavior are particularly promising when they are used in reverse-engineering explanations: explanations that descend from the computational level of analysis to the algorithmic and implementation levels. Unfortunately, it remains unclear exactly how Bayesian models constrain and influence these lower levels of analysis. In this paper, we review and reject two widespread views of Bayesian reverse-engineering, and propose an alternative view according to which Bayesian models at the computational level impose pragmatic constraints that facilitate the generation of testable hypotheses at the algorithmic and implementation levels.

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
03 Fachbereich Humanwissenschaften > Institut für Psychologie > Modelle höherer Kognition
Hinterlegungsdatum: 09 Jul 2018 09:23
Letzte Änderung: 12 Okt 2020 09:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen