Zednik, C. ; Jäkel, F. (2014)
How does Bayesian reverse-engineering work?
Proceedings of the 36th Annual Conference of the Cognitive Science Society / ed. by P. Bello ; M. Guarini ; M. McShane ; B. Scasselati. Austin, TX
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Bayesian models of cognition and behavior are particularly promising when they are used in reverse-engineering explanations: explanations that descend from the computational level of analysis to the algorithmic and implementation levels. Unfortunately, it remains unclear exactly how Bayesian models constrain and influence these lower levels of analysis. In this paper, we review and reject two widespread views of Bayesian reverse-engineering, and propose an alternative view according to which Bayesian models at the computational level impose pragmatic constraints that facilitate the generation of testable hypotheses at the algorithmic and implementation levels.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2014 |
Autor(en): | Zednik, C. ; Jäkel, F. |
Art des Eintrags: | Bibliographie |
Titel: | How does Bayesian reverse-engineering work? |
Sprache: | Englisch |
Publikationsjahr: | 2014 |
Ort: | Austin, TX |
Verlag: | Cognitive Science Society |
Veranstaltungstitel: | Proceedings of the 36th Annual Conference of the Cognitive Science Society / ed. by P. Bello ; M. Guarini ; M. McShane ; B. Scasselati |
Veranstaltungsort: | Austin, TX |
URL / URN: | https://mindmodeling.org/cogsci2014/papers/123/paper123.pdf |
Kurzbeschreibung (Abstract): | Bayesian models of cognition and behavior are particularly promising when they are used in reverse-engineering explanations: explanations that descend from the computational level of analysis to the algorithmic and implementation levels. Unfortunately, it remains unclear exactly how Bayesian models constrain and influence these lower levels of analysis. In this paper, we review and reject two widespread views of Bayesian reverse-engineering, and propose an alternative view according to which Bayesian models at the computational level impose pragmatic constraints that facilitate the generation of testable hypotheses at the algorithmic and implementation levels. |
Fachbereich(e)/-gebiet(e): | 03 Fachbereich Humanwissenschaften 03 Fachbereich Humanwissenschaften > Institut für Psychologie 03 Fachbereich Humanwissenschaften > Institut für Psychologie > Modelle höherer Kognition |
Hinterlegungsdatum: | 09 Jul 2018 09:23 |
Letzte Änderung: | 12 Okt 2020 09:53 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |