TU Darmstadt / ULB / TUbiblio

Does Cognitive Science Need Kernels

Jäkel, F. ; Schölkopf, B. ; Wichmann, F. A. (2009)
Does Cognitive Science Need Kernels.
In: Trends in Cognitive Sciences, 13
doi: 10.1016/j.tics.2009.06.002
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Kernel methods are among the most successful tools in machine learning and are used in challenging data analysis problems in many disciplines. Here we provide examples where kernel methods have proven to be powerful tools for analyzing behavioral data, especially for identifying features in categorization experiments. We also demonstrate that kernel methods relate to perceptrons and exemplar models of categorization. Hence, we argue that kernel methods have neural and psychological plausibility, and theoretical results concerning their behavior are therefore potentially relevant for human category learning. In particular, we believe kernel methods have the potential to provide explanations ranging from the implementational via the algorithmic to the computational level.

Typ des Eintrags: Artikel
Erschienen: 2009
Autor(en): Jäkel, F. ; Schölkopf, B. ; Wichmann, F. A.
Art des Eintrags: Bibliographie
Titel: Does Cognitive Science Need Kernels
Sprache: Englisch
Publikationsjahr: 2009
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Trends in Cognitive Sciences
Jahrgang/Volume einer Zeitschrift: 13
DOI: 10.1016/j.tics.2009.06.002
URL / URN: https://doi.org/10.1016/j.tics.2009.06.002
Kurzbeschreibung (Abstract):

Kernel methods are among the most successful tools in machine learning and are used in challenging data analysis problems in many disciplines. Here we provide examples where kernel methods have proven to be powerful tools for analyzing behavioral data, especially for identifying features in categorization experiments. We also demonstrate that kernel methods relate to perceptrons and exemplar models of categorization. Hence, we argue that kernel methods have neural and psychological plausibility, and theoretical results concerning their behavior are therefore potentially relevant for human category learning. In particular, we believe kernel methods have the potential to provide explanations ranging from the implementational via the algorithmic to the computational level.

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
03 Fachbereich Humanwissenschaften > Institut für Psychologie > Modelle höherer Kognition
Hinterlegungsdatum: 09 Jul 2018 09:16
Letzte Änderung: 12 Okt 2020 11:11
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen