Kuss, M. ; Jäkel, F. ; Wichmann, F. A. (2005)
Bayesian Inference for Psychometric Functions.
In: Journal of Vision, 5
doi: 10.1167/5.5.8
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In psychophysical studies, the psychometric function is used to model the relation between physical stimulus intensity and the observer’s ability to detect or discriminate between stimuli of different intensities. In this study, we propose the use of Bayesian inference to extract the information contained in experimental data to estimate the parameters of psychometric functions. Because Bayesian inference cannot be performed analytically, we describe how a Markov chain Monte Carlo method can be used to generate samples from the posterior distribution over parameters. These samples are used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. In addition, we discuss the parameterization of psychometric functions and the role of prior distributions in the analysis. The proposed approach is exemplified using artificially generated data and in a case study for real experimental data. Furthermore, we compare our approach with traditional methods based on maximum likelihood parameter estimation combined with bootstrap techniques for confidence interval estimation and find the Bayesian approach to be superior.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2005 |
Autor(en): | Kuss, M. ; Jäkel, F. ; Wichmann, F. A. |
Art des Eintrags: | Bibliographie |
Titel: | Bayesian Inference for Psychometric Functions |
Sprache: | Englisch |
Publikationsjahr: | 2005 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Vision |
Jahrgang/Volume einer Zeitschrift: | 5 |
DOI: | 10.1167/5.5.8 |
URL / URN: | https://doi.org/10.1167/5.5.8 |
Kurzbeschreibung (Abstract): | In psychophysical studies, the psychometric function is used to model the relation between physical stimulus intensity and the observer’s ability to detect or discriminate between stimuli of different intensities. In this study, we propose the use of Bayesian inference to extract the information contained in experimental data to estimate the parameters of psychometric functions. Because Bayesian inference cannot be performed analytically, we describe how a Markov chain Monte Carlo method can be used to generate samples from the posterior distribution over parameters. These samples are used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. In addition, we discuss the parameterization of psychometric functions and the role of prior distributions in the analysis. The proposed approach is exemplified using artificially generated data and in a case study for real experimental data. Furthermore, we compare our approach with traditional methods based on maximum likelihood parameter estimation combined with bootstrap techniques for confidence interval estimation and find the Bayesian approach to be superior. |
Fachbereich(e)/-gebiet(e): | 03 Fachbereich Humanwissenschaften 03 Fachbereich Humanwissenschaften > Institut für Psychologie 03 Fachbereich Humanwissenschaften > Institut für Psychologie > Modelle höherer Kognition |
Hinterlegungsdatum: | 09 Jul 2018 09:04 |
Letzte Änderung: | 12 Okt 2020 11:37 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |