TU Darmstadt / ULB / TUbiblio

Temporal clustering with spiking neurons and dynamic synapses: towards technological applications

Storck, J. ; Jäkel, F. ; Deco, G. (2001)
Temporal clustering with spiking neurons and dynamic synapses: towards technological applications.
In: Neural Networks, 14 (3)
doi: 10.1016/S0893-6080(00)00101-5
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We apply spiking neurons with dynamic synapses to detect temporal patterns in a multi-dimensional signal. We use a network of integrate-and-fire neurons, fully connected via dynamic synapses, each of which is given by a biologically plausible dynamical model based on the exact pre- and post-synaptic spike timing. Dependent on their adaptable configuration (learning) the synapses automatically implement specific delays. Hence, each output neuron with its set of incoming synapses works as a detector for a specific temporal pattern. The whole network functions as a temporal clustering mechanism with one output per input cluster. The classification capability is demonstrated by illustrative examples including patterns from Poisson processes and the analysis of speech data.

Typ des Eintrags: Artikel
Erschienen: 2001
Autor(en): Storck, J. ; Jäkel, F. ; Deco, G.
Art des Eintrags: Bibliographie
Titel: Temporal clustering with spiking neurons and dynamic synapses: towards technological applications
Sprache: Englisch
Publikationsjahr: 2001
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Neural Networks
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 3
DOI: 10.1016/S0893-6080(00)00101-5
URL / URN: https://doi.org/10.1016/S0893-6080(00)00101-5
Kurzbeschreibung (Abstract):

We apply spiking neurons with dynamic synapses to detect temporal patterns in a multi-dimensional signal. We use a network of integrate-and-fire neurons, fully connected via dynamic synapses, each of which is given by a biologically plausible dynamical model based on the exact pre- and post-synaptic spike timing. Dependent on their adaptable configuration (learning) the synapses automatically implement specific delays. Hence, each output neuron with its set of incoming synapses works as a detector for a specific temporal pattern. The whole network functions as a temporal clustering mechanism with one output per input cluster. The classification capability is demonstrated by illustrative examples including patterns from Poisson processes and the analysis of speech data.

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
03 Fachbereich Humanwissenschaften > Institut für Psychologie > Modelle höherer Kognition
Hinterlegungsdatum: 09 Jul 2018 09:02
Letzte Änderung: 12 Okt 2020 11:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen