Storck, J. ; Jäkel, F. ; Deco, G. (2001)
Temporal clustering with spiking neurons and dynamic synapses: towards technological applications.
In: Neural Networks, 14 (3)
doi: 10.1016/S0893-6080(00)00101-5
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We apply spiking neurons with dynamic synapses to detect temporal patterns in a multi-dimensional signal. We use a network of integrate-and-fire neurons, fully connected via dynamic synapses, each of which is given by a biologically plausible dynamical model based on the exact pre- and post-synaptic spike timing. Dependent on their adaptable configuration (learning) the synapses automatically implement specific delays. Hence, each output neuron with its set of incoming synapses works as a detector for a specific temporal pattern. The whole network functions as a temporal clustering mechanism with one output per input cluster. The classification capability is demonstrated by illustrative examples including patterns from Poisson processes and the analysis of speech data.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2001 |
Autor(en): | Storck, J. ; Jäkel, F. ; Deco, G. |
Art des Eintrags: | Bibliographie |
Titel: | Temporal clustering with spiking neurons and dynamic synapses: towards technological applications |
Sprache: | Englisch |
Publikationsjahr: | 2001 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Neural Networks |
Jahrgang/Volume einer Zeitschrift: | 14 |
(Heft-)Nummer: | 3 |
DOI: | 10.1016/S0893-6080(00)00101-5 |
URL / URN: | https://doi.org/10.1016/S0893-6080(00)00101-5 |
Kurzbeschreibung (Abstract): | We apply spiking neurons with dynamic synapses to detect temporal patterns in a multi-dimensional signal. We use a network of integrate-and-fire neurons, fully connected via dynamic synapses, each of which is given by a biologically plausible dynamical model based on the exact pre- and post-synaptic spike timing. Dependent on their adaptable configuration (learning) the synapses automatically implement specific delays. Hence, each output neuron with its set of incoming synapses works as a detector for a specific temporal pattern. The whole network functions as a temporal clustering mechanism with one output per input cluster. The classification capability is demonstrated by illustrative examples including patterns from Poisson processes and the analysis of speech data. |
Fachbereich(e)/-gebiet(e): | 03 Fachbereich Humanwissenschaften 03 Fachbereich Humanwissenschaften > Institut für Psychologie 03 Fachbereich Humanwissenschaften > Institut für Psychologie > Modelle höherer Kognition |
Hinterlegungsdatum: | 09 Jul 2018 09:02 |
Letzte Änderung: | 12 Okt 2020 11:43 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |