TU Darmstadt / ULB / TUbiblio

Decentralized Data-Driven Control of Cooperating Sensor-Carrying UAVs in a Multi-Objective Monitoring Scenario

Euler, Juliane ; Stryk, Oskar von (2017)
Decentralized Data-Driven Control of Cooperating Sensor-Carrying UAVs in a Multi-Objective Monitoring Scenario.
In: IFAC-PapersOnLine, 50 (1)
doi: 10.1016/j.ifacol.2017.08.2316
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

For estimating atmospheric dispersion of harmful material, the use of multiple sensor-equipped UAVs for information gathering offers great flexibility, but requires an efficient adaptive sampling strategy that exploits multi-vehicle cooperation. For this purpose, a novel decentralized data-driven online control scheme for cooperating vehicles in multi-objective monitoring scenarios is presented in this paper. In the considered use case, multiple UAVs are to adaptively gather measurements for estimating the parameters of an atmospheric dispersion model. At the same time, they are required to cooperatively patrol predefined checkpoints. Vehicle-specific optimal waypoints for each UAV are determined by sequential optimum design. Following these waypoints leads to a maximized information gain of the acquired measurements, such that the parameter estimate is iteratively improved. On the other hand, checkpoint allocation as well as trajectory planning is provided by a decentralized model-predictive controller based on a discrete-time mixed-integer linear problem formulation. By permanent interaction of parameter estimation, waypoint calculation, and cooperative control, a fully optimization-based, yet efficient and adaptive feedback control approach is obtained. Simulations successfully demonstrate its effectiveness.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Euler, Juliane ; Stryk, Oskar von
Art des Eintrags: Bibliographie
Titel: Decentralized Data-Driven Control of Cooperating Sensor-Carrying UAVs in a Multi-Objective Monitoring Scenario
Sprache: Englisch
Publikationsjahr: Juli 2017
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IFAC-PapersOnLine
Jahrgang/Volume einer Zeitschrift: 50
(Heft-)Nummer: 1
DOI: 10.1016/j.ifacol.2017.08.2316
URL / URN: http://www.sciencedirect.com/science/article/pii/S2405896317...
Kurzbeschreibung (Abstract):

For estimating atmospheric dispersion of harmful material, the use of multiple sensor-equipped UAVs for information gathering offers great flexibility, but requires an efficient adaptive sampling strategy that exploits multi-vehicle cooperation. For this purpose, a novel decentralized data-driven online control scheme for cooperating vehicles in multi-objective monitoring scenarios is presented in this paper. In the considered use case, multiple UAVs are to adaptively gather measurements for estimating the parameters of an atmospheric dispersion model. At the same time, they are required to cooperatively patrol predefined checkpoints. Vehicle-specific optimal waypoints for each UAV are determined by sequential optimum design. Following these waypoints leads to a maximized information gain of the acquired measurements, such that the parameter estimate is iteratively improved. On the other hand, checkpoint allocation as well as trajectory planning is provided by a decentralized model-predictive controller based on a discrete-time mixed-integer linear problem formulation. By permanent interaction of parameter estimation, waypoint calculation, and cooperative control, a fully optimization-based, yet efficient and adaptive feedback control approach is obtained. Simulations successfully demonstrate its effectiveness.

Zusätzliche Informationen:

Special Issue for the 20th World Congress of the International Federation of Automatic Control (IFAC 2017)

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik
LOEWE
LOEWE > LOEWE-Schwerpunkte
LOEWE > LOEWE-Schwerpunkte > NICER – Vernetzte infrastrukturlose Kooperation zur Krisenbewältigung
Hinterlegungsdatum: 15 Aug 2017 13:25
Letzte Änderung: 10 Dez 2021 08:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen