TU Darmstadt / ULB / TUbiblio

Browse by Person

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: No Grouping | Item Type | Date | Language
Number of items: 6.

Tanneberg, Daniel ; Peters, Jan ; Rueckert, Elmar (2022):
Intrinsic motivation and mental replay enable efficient online adaptation in stochastic recurrent networks. (Postprint)
In: Neural Networks, 109, pp. 67-80. Elsevier, ISSN 0893-6080,
DOI: 10.26083/tuprints-00020537,
[Article]

Tanneberg, Daniel ; Peters, Jan ; Rueckert, Elmar (2022):
Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals. (Publisher's Version)
In: Proceedings of Machine Learning Research, 78, In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 167-174,
Darmstadt, PMLR, CoRL2017 - Conference on Robot Learning 2017, Mountain View, California, 13.-15.11.2017, DOI: 10.26083/tuprints-00020580,
[Conference or Workshop Item]

Tanneberg, Daniel ; Ploeger, Kai ; Rueckert, Elmar ; Peters, Jan (2022):
SKID RAW: Skill Discovery From Raw Trajectories. (Postprint)
In: IEEE Robotics and Automation Letters, 6 (3), pp. 4696-4703. IEEE, ISSN 2377-3774, e-ISSN 2377-3766,
DOI: 10.26083/tuprints-00020536,
[Article]

Tanneberg, Daniel (2020):
Understand-Compute-Adapt: Neural Networks for Intelligent Agents. (Publisher's Version)
Darmstadt, Technische Universität Darmstadt,
DOI: 10.25534/tuprints-00017234,
[Ph.D. Thesis]

Tanneberg, Daniel ; Peters, Jan ; Rueckert, Elmar (2019):
Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks.
In: Neural Networks, 109, pp. 67-80. Elsevier, ISSN 0893-6080,
DOI: 10.1016/j.neunet.2018.10.005,
[Article]

Rueckert, Elmar ; Kappel, David ; Tanneberg, Daniel ; Pecevski, Dejan ; Peters, Jan (2016):
Recurrent Spiking Networks Solve Planning Tasks.
In: Scientific Reports, 6 (21142), Nature Publ. Group, ISSN 2045-2322,
[Article]

This list was generated on Sat Nov 26 00:24:23 2022 CET.