TU Darmstadt / ULB / TUbiblio

Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and Learning Mean-Field Control

Cui, K. ; Li, M. ; Fabian, C. ; Koeppl, H. (2023)
Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and Learning Mean-Field Control.
40th IEEE International Conference on Robotics and Automation (ICRA2023). London, United Kingdom (29.05.2023 - 02.06.2023)
doi: 10.1109/ICRA48891.2023.10161498
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In recent years, reinforcement learning and its multi-agent analogue have achieved great success in solving various complex control problems. However, multi-agent rein-forcement learning remains challenging both in its theoretical analysis and empirical design of algorithms, especially for large swarms of embodied robotic agents where a definitive toolchain remains part of active research. We use emerging state-of-the-art mean-field control techniques in order to convert many-agent swarm control into more classical single-agent control of distributions. This allows profiting from advances in single-agent reinforcement learning at the cost of assuming weak interaction between agents. However, the mean-field model is violated by the nature of real systems with embodied, physically colliding agents. Thus, we combine collision avoidance and learning of mean-field control into a unified framework for tractably designing intelligent robotic swarm behavior. On the theoretical side, we provide novel approximation guarantees for general mean-field control both in continuous spaces and with collision avoidance. On the practical side, we show that our approach outperforms multi-agent reinforcement learning and allows for decentralized open-loop application while avoiding collisions, both in simulation and real UAV swarms. Overall, we propose a framework for the design of swarm behavior that is both mathematically well-founded and practically useful, enabling the solution of otherwise intractable swarm problems.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Cui, K. ; Li, M. ; Fabian, C. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and Learning Mean-Field Control
Sprache: Englisch
Publikationsjahr: 4 Juli 2023
Verlag: IEEE
Buchtitel: 2023 IEEE International Conference on Robotics and Automation (ICRA)
Veranstaltungstitel: 40th IEEE International Conference on Robotics and Automation (ICRA2023)
Veranstaltungsort: London, United Kingdom
Veranstaltungsdatum: 29.05.2023 - 02.06.2023
DOI: 10.1109/ICRA48891.2023.10161498
Kurzbeschreibung (Abstract):

In recent years, reinforcement learning and its multi-agent analogue have achieved great success in solving various complex control problems. However, multi-agent rein-forcement learning remains challenging both in its theoretical analysis and empirical design of algorithms, especially for large swarms of embodied robotic agents where a definitive toolchain remains part of active research. We use emerging state-of-the-art mean-field control techniques in order to convert many-agent swarm control into more classical single-agent control of distributions. This allows profiting from advances in single-agent reinforcement learning at the cost of assuming weak interaction between agents. However, the mean-field model is violated by the nature of real systems with embodied, physically colliding agents. Thus, we combine collision avoidance and learning of mean-field control into a unified framework for tractably designing intelligent robotic swarm behavior. On the theoretical side, we provide novel approximation guarantees for general mean-field control both in continuous spaces and with collision avoidance. On the practical side, we show that our approach outperforms multi-agent reinforcement learning and allows for decentralized open-loop application while avoiding collisions, both in simulation and real UAV swarms. Overall, we propose a framework for the design of swarm behavior that is both mathematically well-founded and practically useful, enabling the solution of otherwise intractable swarm problems.

Freie Schlagworte: emergenCITY, emergenCITY_KOM
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 11 Jun 2024 12:20
Letzte Änderung: 20 Nov 2024 12:22
PPN: 519033965
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen