Blättern nach Person
Ebene hoch |
Ruess, J. ; Koeppl, H. ; Zechner, C. (2017)
Sensitivity estimation for stochastic models of biochemical reaction networks in the presence of extrinsic variability.
In: The Journal of Chemical Physics, 146 (124122)
Artikel, Bibliographie
Studer, L. ; Paulevé, L. ; Zechner, C. ; Reumann, M. ; Rodriguez Martinez, M. ; Koeppl, H. (2016)
Marginalized Continuous Time Bayesian Networks for Network Reconstruction from Incomplete Observations.
AAAI, Association for the Advancement of Artificial Intelligence. Phoenix, USA (12.02.2016-17.02.2016)
Konferenzveröffentlichung, Bibliographie
Huang, L. ; Hansen, A. S. ; Pauleve, L. ; Unger, M. ; Zechner, C. ; Koeppl, H. (2016)
Reconstructing dynamic molecular states from single-cell time series.
In: Journal of The Royal Society Interface, 13 (122)
doi: 10.1098/rsif.2016.0533
Artikel, Bibliographie
Bronstein, L. ; Zechner, C. ; Koeppl, H. (2015)
Bayesian inference of reaction kinetics from single-cell recordings across
a heterogeneous cell population.
In: ScienceDirect - Methods, 85
Artikel, Bibliographie
Koeppl, H. ; Zechner, C. (2014)
Uncoupled analysis of stochastic reaction networks in fluctuating environments.
In: PLOS Computational Biology, 10 (12)
Artikel, Bibliographie
Zechner, C. ; Unger, M. ; Pelet, S. ; Peter, M. ; Koeppl, H. (2014)
Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings.
In: Nature methods, 11 (2)
Artikel, Bibliographie
Zechner, C. ; Wadehn, F. ; Koeppl, H. (2014)
Sparse learning of Markovian population models in random environments.
IFAC 2014, The 19th World Congress of the International Federation of Automatic Control, Promoting automatic control for the benefit of humankind. Cape Town, South Africa (24.08.2014-29.08.2014)
Konferenzveröffentlichung, Bibliographie
Tarca, A. L. ; Lauria, M. ; Unger, M. ; Bilal, E. ; Boue, S. ; Kumar Dey, K. ; Hoeng, J. ; Koeppl, H. ; Martin, F. ; Meyer, P. ; Nandy, P. ; Norel, R. ; Peitsch, M. ; Rice, J. ; Romero, R. ; Stolovitzky, G. ; Talikka, M. ; Xiang, Y. ; Zechner, C. (2013)
Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge.
In: Bioinformatics (Oxford, England), 29 (22)
Artikel, Bibliographie
Nandy, P. ; Unger, M. ; Zechner, C. ; Dey, K. ; Koeppl, H. (2013)
Learning diagnostic signatures from microarray data using Ll-regularized logistic regression.
In: Systems Biomedicine, 1 (4)
Artikel, Bibliographie
Zechner, C. ; Deb, S. ; Koeppl, H. (2013)
Marginal dynamics of stochastic biochemical networks in random environments.
2013 European Control Conference (ECC). Zürich (17.07.2013-19.07.2013)
Konferenzveröffentlichung, Bibliographie
Zechner, C. ; Nandy, P. ; Unger, M. ; Koeppl, H. (2012)
Optimal variational perturbations for the inference of stochastic reaction dynamics.
2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
Konferenzveröffentlichung, Bibliographie
Koeppl, H. ; Zechner, C. ; Ganguly, A. ; Pelet, S. ; Peter, M. (2012)
Accounting for extrinsic variability in the estimation of stochastic rate constants.
In: International Journal of Robust and Nonlinear Control, 22 (10)
Artikel, Bibliographie
Nandy, P. ; Unger, M. ; Zechner, C. ; Koeppl, H. (2012)
Optimal Perturbations for the Identification of Stochastic Reaction Dynamics.
16th IFAC Symposium on System Identification.
Konferenzveröffentlichung, Bibliographie
Zechner, C. ; Ruess, J. ; Krenn, P. ; Pelet, S. ; Peter, M. ; Lygeros, J. ; Koeppl, H. (2012)
Moment-based inference predicts bimodality in transient gene expression.
In: Proceedings of the National Academy of Sciences of the United States of America, 109 (21)
Artikel, Bibliographie
Zechner, C. ; Pelet, S. ; Peter, M. ; Koeppl, H. (2011)
Recursive Bayesian estimation of stochastic rate constants from heterogeneous cell populations.
In: IEEE Conference on Decision and Control and European Control Conference
Artikel, Bibliographie