TU Darmstadt / ULB / TUbiblio

Neural End-to-End Learning for Computational Argumentation Mining

Eger, Steffen ; Daxenberger, Johannes ; Gurevych, Iryna (2017)
Neural End-to-End Learning for Computational Argumentation Mining.
Vancouver, Canada
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We investigate neural techniques for end-to-end computational argumentation mining (AM). We frame AM both as a token-based dependency parsing and as a token-based sequence tagging problem, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing AM as dependency parsing leads to subpar performance results. In contrast, less complex (local) tagging models based on BiLSTMs perform robustly across classification scenarios, being able to catch long-range dependencies inherent to the AM problem. Moreover, we find that jointly learning ‘natural’ subtasks, in a multi-task learning setup, improves performance.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Eger, Steffen ; Daxenberger, Johannes ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Neural End-to-End Learning for Computational Argumentation Mining
Sprache: Englisch
Publikationsjahr: Juli 2017
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017)
Band einer Reihe: Volume 1: Long Papers
Veranstaltungsort: Vancouver, Canada
URL / URN: http://aclweb.org/anthology/P17-1002
Zugehörige Links:
Kurzbeschreibung (Abstract):

We investigate neural techniques for end-to-end computational argumentation mining (AM). We frame AM both as a token-based dependency parsing and as a token-based sequence tagging problem, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing AM as dependency parsing leads to subpar performance results. In contrast, less complex (local) tagging models based on BiLSTMs perform robustly across classification scenarios, being able to catch long-range dependencies inherent to the AM problem. Moreover, we find that jointly learning ‘natural’ subtasks, in a multi-task learning setup, improves performance.

Freie Schlagworte: UKP_a_DLinNLP, UKP_a_ArMin, reviewed, UKP_p_ArgumenText
ID-Nummer: TUD-CS-2017-0070
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Mär 2017 14:02
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Projekte: ArgumenText
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen