TU Darmstadt / ULB / TUbiblio

What is the Essence of a Claim? Cross-Domain Claim Identification

Daxenberger, Johannes ; Eger, Steffen ; Habernal, Ivan ; Stab, Christian ; Gurevych, Iryna (2017)
What is the Essence of a Claim? Cross-Domain Claim Identification.
Copenhagen, Denmark
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Argument mining has become a popular research area in NLP. It typically includes the identification of argumentative components, e.g. claims, as the central component of an argument. We perform a qualitative analysis across six different datasets and show that these appear to conceptualize claims quite differently. To learn about the consequences of such different conceptualizations of claim for practical applications, we carried out extensive experiments using state-of-the-art feature-rich and deep learning systems, to identify claims in a cross-domain fashion. While the divergent perception of claims in different datasets is indeed harmful to cross-domain classification, we show that there are shared properties on the lexical level as well as system configurations that can help to overcome these gaps.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Daxenberger, Johannes ; Eger, Steffen ; Habernal, Ivan ; Stab, Christian ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: What is the Essence of a Claim? Cross-Domain Claim Identification
Sprache: Englisch
Publikationsjahr: September 2017
Buchtitel: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Veranstaltungsort: Copenhagen, Denmark
URL / URN: http://aclweb.org/anthology/D17-1218
Kurzbeschreibung (Abstract):

Argument mining has become a popular research area in NLP. It typically includes the identification of argumentative components, e.g. claims, as the central component of an argument. We perform a qualitative analysis across six different datasets and show that these appear to conceptualize claims quite differently. To learn about the consequences of such different conceptualizations of claim for practical applications, we carried out extensive experiments using state-of-the-art feature-rich and deep learning systems, to identify claims in a cross-domain fashion. While the divergent perception of claims in different datasets is indeed harmful to cross-domain classification, we show that there are shared properties on the lexical level as well as system configurations that can help to overcome these gaps.

Freie Schlagworte: UKP_a_ArMin, UKP_s_DKPro_TC, UKP_p_ArguAna, UKP_p_ArgumenText
ID-Nummer: TUD-CS-2017-0099
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 25 Apr 2017 18:55
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Projekte: ArgumenText
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen