TU Darmstadt / ULB / TUbiblio

StreAM-Tg : algorithms for analyzing coarse grained RNA dynamics based on Markov models of connectivity-graphs

Jager, Sven ; Schiller, Benjamin ; Babel, Philipp ; Blumenroth, Malte ; Strufe, Thorsten ; Hamacher, Kay (2017)
StreAM-Tg : algorithms for analyzing coarse grained RNA dynamics based on Markov models of connectivity-graphs.
In: Algorithms for Molecular Biology, 2017, 12 (1)
doi: 10.1186/s13015-017-0105-0
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Background

In this work, we present a new coarse grained representation of RNA dynamics. It is based on adjacency matrices and their interactions patterns obtained from molecular dynamics simulations. RNA molecules are well-suited for this representation due to their composition which is mainly modular and assessable by the secondary structure alone. These interactions can be represented as adjacency matrices of k nucleotides. Based on those, we define transitions between states as changes in the adjacency matrices which form Markovian dynamics. The intense computational demand for deriving the transition probability matrices prompted us to develop StreAM-Tg, a stream-based algorithm for generating such Markov models of k-vertex adjacency matrices representing the RNA.

Results

We benchmark StreAM-Tg(a) for random and RNA unit sphere dynamic graphs (b) for the robustness of our method against different parameters. Moreover, we address a riboswitch design problem by applying StreAM-Tg on six long term molecular dynamics simulation of a synthetic tetracycline dependent riboswitch (500 ns) in combination with five different antibiotics.

Conclusions

The proposed algorithm performs well on large simulated as well as real world dynamic graphs. Additionally, StreAM-Tg provides insights into nucleotide based RNA dynamics in comparison to conventional metrics like the root-mean square fluctuation. In the light of experimental data our results show important design opportunities for the riboswitch.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Jager, Sven ; Schiller, Benjamin ; Babel, Philipp ; Blumenroth, Malte ; Strufe, Thorsten ; Hamacher, Kay
Art des Eintrags: Zweitveröffentlichung
Titel: StreAM-Tg : algorithms for analyzing coarse grained RNA dynamics based on Markov models of connectivity-graphs
Sprache: Englisch
Publikationsjahr: 2017
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2017
Verlag: Biomed Central
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Algorithms for Molecular Biology
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 1
DOI: 10.1186/s13015-017-0105-0
URL / URN: http://tuprints.ulb.tu-darmstadt.de/6794
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Background

In this work, we present a new coarse grained representation of RNA dynamics. It is based on adjacency matrices and their interactions patterns obtained from molecular dynamics simulations. RNA molecules are well-suited for this representation due to their composition which is mainly modular and assessable by the secondary structure alone. These interactions can be represented as adjacency matrices of k nucleotides. Based on those, we define transitions between states as changes in the adjacency matrices which form Markovian dynamics. The intense computational demand for deriving the transition probability matrices prompted us to develop StreAM-Tg, a stream-based algorithm for generating such Markov models of k-vertex adjacency matrices representing the RNA.

Results

We benchmark StreAM-Tg(a) for random and RNA unit sphere dynamic graphs (b) for the robustness of our method against different parameters. Moreover, we address a riboswitch design problem by applying StreAM-Tg on six long term molecular dynamics simulation of a synthetic tetracycline dependent riboswitch (500 ns) in combination with five different antibiotics.

Conclusions

The proposed algorithm performs well on large simulated as well as real world dynamic graphs. Additionally, StreAM-Tg provides insights into nucleotide based RNA dynamics in comparison to conventional metrics like the root-mean square fluctuation. In the light of experimental data our results show important design opportunities for the riboswitch.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-67942
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Computational Biology and Simulation
Hinterlegungsdatum: 17 Sep 2017 19:55
Letzte Änderung: 08 Dez 2023 06:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen