TU Darmstadt / ULB / TUbiblio

High quality epitaxial fluorine-doped SnO2 films by ultrasonic spray pyrolysis: Structural and physical property investigation

Zhang, Shan-Ting ; Rouvière, Jean-Luc ; Consonni, Vincent ; Roussel, Hervé ; Rapenne, Laetitia ; Pernot, Etienne ; Muñoz-Rojas, David ; Klein, Andreas ; Bellet, Daniel (2017)
High quality epitaxial fluorine-doped SnO2 films by ultrasonic spray pyrolysis: Structural and physical property investigation.
In: Materials & Design, 132
doi: 10.1016/j.matdes.2017.07.037
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Despite its wide use in the display and photovoltaic industries, fluorine-doped tin oxide (F:SnO2, FTO) has been studied only in its polycrystalline form. In this work, we report on the first growth of epitaxial FTO thin film by ultrasonic spray pyrolysis – a simple chemical deposition method – and we reveal the structure-property interplay by investigating in details its growth, morphology and strain/defects. Epitaxial FTO films are successfully grown on (110) rutile TiO2 single crystals and form mosaic domains with an out-of-plane distribution smaller than 0.5°, showing high structural quality comparable to epitaxial films prepared by molecular beam epitaxy and pulsed-laser deposition. Owing to the large lattice mismatch with rutile TiO2, the FTO film develops significant structural defects to release the epitaxial strain and is consequently nearly fully relaxed with a slight residual strain of 0.1–0.2%. With the help of an innovative nano-beam precession electron diffraction technique, the strain distribution is mapped at the TiO2/FTO interface, from which we identify the interfacial and secondary strain relaxation taking place mainly in the first 22 nm in the FTO film. The Hall-mobility of the epitaxial FTO films is close to the state-of-the-art and expected to improve further at lower doping concentrations.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Zhang, Shan-Ting ; Rouvière, Jean-Luc ; Consonni, Vincent ; Roussel, Hervé ; Rapenne, Laetitia ; Pernot, Etienne ; Muñoz-Rojas, David ; Klein, Andreas ; Bellet, Daniel
Art des Eintrags: Bibliographie
Titel: High quality epitaxial fluorine-doped SnO2 films by ultrasonic spray pyrolysis: Structural and physical property investigation
Sprache: Englisch
Publikationsjahr: 15 Oktober 2017
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials & Design
Jahrgang/Volume einer Zeitschrift: 132
DOI: 10.1016/j.matdes.2017.07.037
Kurzbeschreibung (Abstract):

Despite its wide use in the display and photovoltaic industries, fluorine-doped tin oxide (F:SnO2, FTO) has been studied only in its polycrystalline form. In this work, we report on the first growth of epitaxial FTO thin film by ultrasonic spray pyrolysis – a simple chemical deposition method – and we reveal the structure-property interplay by investigating in details its growth, morphology and strain/defects. Epitaxial FTO films are successfully grown on (110) rutile TiO2 single crystals and form mosaic domains with an out-of-plane distribution smaller than 0.5°, showing high structural quality comparable to epitaxial films prepared by molecular beam epitaxy and pulsed-laser deposition. Owing to the large lattice mismatch with rutile TiO2, the FTO film develops significant structural defects to release the epitaxial strain and is consequently nearly fully relaxed with a slight residual strain of 0.1–0.2%. With the help of an innovative nano-beam precession electron diffraction technique, the strain distribution is mapped at the TiO2/FTO interface, from which we identify the interfacial and secondary strain relaxation taking place mainly in the first 22 nm in the FTO film. The Hall-mobility of the epitaxial FTO films is close to the state-of-the-art and expected to improve further at lower doping concentrations.

Freie Schlagworte: FTO, Epitaxy growth, Local strain distribution, Dislocations, Mobility
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 09 Aug 2017 10:35
Letzte Änderung: 26 Jun 2018 12:13
PPN:
Sponsoren: This work was supported by the European project IDS-FunMat and Agence Nationale de la Recherche (ANR, France) via the program CE05 INDEED (Project ID: ANR-15-CE05-0019)., David Muñoz-Rojas acknowledges funding through the Marie Curie Actions (FP7/2007-2013, Grant Agreement No.631111)., CEA-Grenoble thanks the FEI company and especially Max Otton and Mark Williamson for their helps.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen