TU Darmstadt / ULB / TUbiblio

Polymorphism of the Blocking TiO2 Layer Deposited on F:SnO2 and Its Influence on the Interfacial Energetic Alignment

Zhang, Shan-Ting ; Roussel, Hervé ; Chaix-Pluchery, Odette ; Langlet, Michel ; Muñoz-Rojas, David ; Bellet, Daniel ; Klein, Andreas (2017)
Polymorphism of the Blocking TiO2 Layer Deposited on F:SnO2 and Its Influence on the Interfacial Energetic Alignment.
In: The Journal of Physical Chemistry C, 121 (32)
doi: 10.1021/acs.jpcc.7b04893
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

As widely employed in dye-sensitized, perovskite, and quantum-dot solar cells, the interface between F-doped SnO2 (FTO) and blocking TiO2 (b-TiO2) is essential in understanding the working principles of these types of solar cells. In this work, we have deposited b-TiO2 layers using a simple sol–gel method. While the b-TiO2 layers deposited on Si (100) wafers form pure anatase polymorph, we have found that the rutile structure of the FTO substrates consistently induces the b-TiO2 layers to crystallize into mixed anatase and rutile polymorphs; the same is observed on rutile RuO2 substrates. This indicates that the rutile structural similarity favors the formation of rutile polymorph in b-TiO2 layers; due to the coexistence of both anatase and rutile polymorphs, the interface of FTO/b-TiO2 is essentially inhomogeneous. We also show that the amount of rutile polymorph present in the b-TiO2 layer is a function of layer thickness, with rutile polymorph dominating in thin b-TiO2 layers. As a result, the energetic alignment at the FTO/b-TiO2 interface in general still favors the charge transport. This is confirmed by directly probing an ultrathin (<10 nm) b-TiO2 layer using X-ray photoelectron spectroscopy (XPS). We emphasize that the rutile structure of FTO substrate plays a significant role in determining the polymorph of successively deposited b-TiO2 layer, which in turn affects the energetic alignment with FTO electrodes and mesoporous nanocrystalline TiO2, and ultimately the performance of solar devices.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Zhang, Shan-Ting ; Roussel, Hervé ; Chaix-Pluchery, Odette ; Langlet, Michel ; Muñoz-Rojas, David ; Bellet, Daniel ; Klein, Andreas
Art des Eintrags: Bibliographie
Titel: Polymorphism of the Blocking TiO2 Layer Deposited on F:SnO2 and Its Influence on the Interfacial Energetic Alignment
Sprache: Englisch
Publikationsjahr: 25 Juli 2017
Verlag: American Chemical Society Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Journal of Physical Chemistry C
Jahrgang/Volume einer Zeitschrift: 121
(Heft-)Nummer: 32
DOI: 10.1021/acs.jpcc.7b04893
Kurzbeschreibung (Abstract):

As widely employed in dye-sensitized, perovskite, and quantum-dot solar cells, the interface between F-doped SnO2 (FTO) and blocking TiO2 (b-TiO2) is essential in understanding the working principles of these types of solar cells. In this work, we have deposited b-TiO2 layers using a simple sol–gel method. While the b-TiO2 layers deposited on Si (100) wafers form pure anatase polymorph, we have found that the rutile structure of the FTO substrates consistently induces the b-TiO2 layers to crystallize into mixed anatase and rutile polymorphs; the same is observed on rutile RuO2 substrates. This indicates that the rutile structural similarity favors the formation of rutile polymorph in b-TiO2 layers; due to the coexistence of both anatase and rutile polymorphs, the interface of FTO/b-TiO2 is essentially inhomogeneous. We also show that the amount of rutile polymorph present in the b-TiO2 layer is a function of layer thickness, with rutile polymorph dominating in thin b-TiO2 layers. As a result, the energetic alignment at the FTO/b-TiO2 interface in general still favors the charge transport. This is confirmed by directly probing an ultrathin (<10 nm) b-TiO2 layer using X-ray photoelectron spectroscopy (XPS). We emphasize that the rutile structure of FTO substrate plays a significant role in determining the polymorph of successively deposited b-TiO2 layer, which in turn affects the energetic alignment with FTO electrodes and mesoporous nanocrystalline TiO2, and ultimately the performance of solar devices.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 09 Aug 2017 10:37
Letzte Änderung: 26 Jun 2018 11:19
PPN:
Sponsoren: We acknowledge the funding by the European Doctoral Program “IDS-FunMat” and Agence Nationale de Recherche (ANR, France) via the programme CE05 INDEED., D.M.-R. acknowledges funding through the Marie Curie Actions (FP7/2007-2013, grant agreement no. 631111).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen