Groß, Christine ; Hamacher, Kay ; Schmitz, Katja ; Jager, Sven (2017)
Cleavage Product Accumulation Decreases the Activity of Cutinase during PET Hydrolysis.
In: Journal of chemical information and modeling, 57 (2)
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The Fusarium solani cutinase (FsC) is a promising candidate for the enzymatic degradation of the synthetic polyester polyethylene terephthalate (PET) but still suffers from a lack of activity. Using atomic MD simulations with different concentrations of cleavage product ethylene glycol (EG), we show influences of EG on the dynamic of FsC. We observed accumulation of EG in the active site region reducing the local flexibility of FsC. Furthermore, we used a coarse-grained mechanical model to investigate whether substrate binding in the active site causes an induced fit. We observed this supposed induced fit or "breath-like" movement during substrate binding indicating that the active site has to be flexible for substrate conversion. This guides rational design: mutants with an increased flexibility near the active site should be considered to compensate the solvent-mediated reduction in activity.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2017 |
Autor(en): | Groß, Christine ; Hamacher, Kay ; Schmitz, Katja ; Jager, Sven |
Art des Eintrags: | Bibliographie |
Titel: | Cleavage Product Accumulation Decreases the Activity of Cutinase during PET Hydrolysis. |
Sprache: | Englisch |
Publikationsjahr: | 2017 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of chemical information and modeling |
Jahrgang/Volume einer Zeitschrift: | 57 |
(Heft-)Nummer: | 2 |
Kurzbeschreibung (Abstract): | The Fusarium solani cutinase (FsC) is a promising candidate for the enzymatic degradation of the synthetic polyester polyethylene terephthalate (PET) but still suffers from a lack of activity. Using atomic MD simulations with different concentrations of cleavage product ethylene glycol (EG), we show influences of EG on the dynamic of FsC. We observed accumulation of EG in the active site region reducing the local flexibility of FsC. Furthermore, we used a coarse-grained mechanical model to investigate whether substrate binding in the active site causes an induced fit. We observed this supposed induced fit or "breath-like" movement during substrate binding indicating that the active site has to be flexible for substrate conversion. This guides rational design: mutants with an increased flexibility near the active site should be considered to compensate the solvent-mediated reduction in activity. |
ID-Nummer: | pmid:28128951 |
Fachbereich(e)/-gebiet(e): | 10 Fachbereich Biologie 10 Fachbereich Biologie > Computational Biology and Simulation 07 Fachbereich Chemie 07 Fachbereich Chemie > Clemens-Schöpf-Institut > Fachgebiet Biochemie 07 Fachbereich Chemie > Clemens-Schöpf-Institut > Fachgebiet Biochemie > Biologische Chemie |
Hinterlegungsdatum: | 13 Feb 2017 11:36 |
Letzte Änderung: | 23 Apr 2020 09:01 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |