TU Darmstadt / ULB / TUbiblio

Reconstructing dynamic molecular states from single-cell time series

Huang, L. ; Hansen, A. S. ; Pauleve, L. ; Unger, M. ; Zechner, C. ; Koeppl, H. (2016)
Reconstructing dynamic molecular states from single-cell time series.
In: Journal of The Royal Society Interface, 13 (122)
doi: 10.1098/rsif.2016.0533
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe the time evolution of the system in a self-consistent manner. This is a prerequisite for a principled understanding of the inner workings of a system. Owing to the complexity of intracellular processes, experimental techniques that can retrieve a sufficient summary are beyond our reach. For the case of stochastic biomolecular reaction networks, we show how to convert the partial state information accessible by experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximations to the corresponding infinite-dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic promoter and mRNA states from noisy protein abundance measurements.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Huang, L. ; Hansen, A. S. ; Pauleve, L. ; Unger, M. ; Zechner, C. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Reconstructing dynamic molecular states from single-cell time series
Sprache: Englisch
Publikationsjahr: 2016
Verlag: Royal Society Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of The Royal Society Interface
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 122
DOI: 10.1098/rsif.2016.0533
URL / URN: http://rsif.royalsocietypublishing.org/content/13/122/201605...
Kurzbeschreibung (Abstract):

The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe the time evolution of the system in a self-consistent manner. This is a prerequisite for a principled understanding of the inner workings of a system. Owing to the complexity of intracellular processes, experimental techniques that can retrieve a sufficient summary are beyond our reach. For the case of stochastic biomolecular reaction networks, we show how to convert the partial state information accessible by experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximations to the corresponding infinite-dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic promoter and mRNA states from noisy protein abundance measurements.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 15 Sep 2016 06:27
Letzte Änderung: 20 Nov 2023 13:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen