TU Darmstadt / ULB / TUbiblio

Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance

Niu, Gang ; Calka, Pauline ; Auf der Maur, Matthias ; Santoni, Francesco ; Guha, Subhajit ; Fraschke, Mirko ; Hamoumou, Philippe ; Gautier, Brice ; Perez, Eduardo ; Walczyk, Christian ; Wenger, Christian ; Di Carlo, Aldo ; Alff, Lambert ; Schroeder, Thomas (2016)
Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance.
In: Scientific Reports, 6
doi: 10.1038/srep25757
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Filament-type HfO2-based RRAM has been considered as one of the most promising candidates for future non-volatile memories. Further improvement of the stability, particularly at the "OFF" state, of such devices is mainly hindered by resistance variation induced by the uncontrolled oxygen vacancies distribution and filament growth in HfO2 films. We report highly stable endurance of TiN/Ti/HfO2/Si-tip RRAM devices using a CMOS compatible nanotip method. Simulations indicate that the nanotip bottom electrode provides a local confinement for the electrical field and ionic current density; thus a nano-confinement for the oxygen vacancy distribution and nano-filament location is created by this approach. Conductive atomic force microscopy measurements confirm that the filaments form only on the nanotip region. Resistance switching by using pulses shows highly stable endurance for both ON and OFF modes, thanks to the geometric confinement of the conductive path and filament only above the nanotip. This nano-engineering approach opens a new pathway to realize forming-free RRAM devices with improved stability and reliability.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Niu, Gang ; Calka, Pauline ; Auf der Maur, Matthias ; Santoni, Francesco ; Guha, Subhajit ; Fraschke, Mirko ; Hamoumou, Philippe ; Gautier, Brice ; Perez, Eduardo ; Walczyk, Christian ; Wenger, Christian ; Di Carlo, Aldo ; Alff, Lambert ; Schroeder, Thomas
Art des Eintrags: Bibliographie
Titel: Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance
Sprache: Englisch
Publikationsjahr: 16 Mai 2016
Verlag: NATURE PUBLISHING GROUP, ENGLAND
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 6
DOI: 10.1038/srep25757
Kurzbeschreibung (Abstract):

Filament-type HfO2-based RRAM has been considered as one of the most promising candidates for future non-volatile memories. Further improvement of the stability, particularly at the "OFF" state, of such devices is mainly hindered by resistance variation induced by the uncontrolled oxygen vacancies distribution and filament growth in HfO2 films. We report highly stable endurance of TiN/Ti/HfO2/Si-tip RRAM devices using a CMOS compatible nanotip method. Simulations indicate that the nanotip bottom electrode provides a local confinement for the electrical field and ionic current density; thus a nano-confinement for the oxygen vacancy distribution and nano-filament location is created by this approach. Conductive atomic force microscopy measurements confirm that the filaments form only on the nanotip region. Resistance switching by using pulses shows highly stable endurance for both ON and OFF modes, thanks to the geometric confinement of the conductive path and filament only above the nanotip. This nano-engineering approach opens a new pathway to realize forming-free RRAM devices with improved stability and reliability.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 06 Jun 2016 11:14
Letzte Änderung: 06 Jun 2016 11:14
PPN:
Sponsoren: P. Calka is grateful to the Alexander von Humboldt foundation for granting her PostDoc fellowship., HP authors gratefully acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG) for the RRAM project under contract "SCHR 1123/7-2".
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen