TU Darmstadt / ULB / TUbiblio

Marginalized Continuous Time Bayesian Networks for Network Reconstruction from Incomplete Observations

Studer, L. ; Paulevé, L. ; Zechner, C. ; Reumann, M. ; Rodriguez Martinez, M. ; Koeppl, H. (2016)
Marginalized Continuous Time Bayesian Networks for Network Reconstruction from Incomplete Observations.
AAAI, Association for the Advancement of Artificial Intelligence. Phoenix, USA (12.02.2016-17.02.2016)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Continuous Time Bayesian Networks (CTBNs) provide a powerful means to model complex network dynamics. However, their inference is computationally demanding—especially if one considers incomplete and noisy time-series data. The latter gives rise to a joint stateand parameter estimation problem, which can only be solved numerically. However, finding the exact parameterization of the CTBN has only secondary importance in most practical scenarios. We therefore propose a method that circumvents the inference of parameters by analytically marginalizing the Markov chain underlying the CTBN model. Since the resulting stochastic process does no longer depend on any model parameters, its inference reduces to a plain nonlinear filtering problem. We solve the latter using a highly efficient implementation of a sequential Monte Carlo scheme. Our framework enables CTBN learning to be applied to incomplete noisy time-series data such as frequently found in molecular biology and other disciplines.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Studer, L. ; Paulevé, L. ; Zechner, C. ; Reumann, M. ; Rodriguez Martinez, M. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Marginalized Continuous Time Bayesian Networks for Network Reconstruction from Incomplete Observations
Sprache: Englisch
Publikationsjahr: 12 Februar 2016
Ort: Phoenix, USA
Veranstaltungstitel: AAAI, Association for the Advancement of Artificial Intelligence
Veranstaltungsort: Phoenix, USA
Veranstaltungsdatum: 12.02.2016-17.02.2016
URL / URN: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/123...
Kurzbeschreibung (Abstract):

Continuous Time Bayesian Networks (CTBNs) provide a powerful means to model complex network dynamics. However, their inference is computationally demanding—especially if one considers incomplete and noisy time-series data. The latter gives rise to a joint stateand parameter estimation problem, which can only be solved numerically. However, finding the exact parameterization of the CTBN has only secondary importance in most practical scenarios. We therefore propose a method that circumvents the inference of parameters by analytically marginalizing the Markov chain underlying the CTBN model. Since the resulting stochastic process does no longer depend on any model parameters, its inference reduces to a plain nonlinear filtering problem. We solve the latter using a highly efficient implementation of a sequential Monte Carlo scheme. Our framework enables CTBN learning to be applied to incomplete noisy time-series data such as frequently found in molecular biology and other disciplines.

Freie Schlagworte: sequential Monte Carlo; graph reconstruction; continuous time Bayesian network
Zusätzliche Informationen:

Copyright 2015 Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 08 Dez 2015 10:59
Letzte Änderung: 23 Sep 2021 14:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen