TU Darmstadt / ULB / TUbiblio

Graded Multilabel Classification by Pairwise Comparisons

Brinker, Christian ; Loza Mencía, Eneldo ; Fürnkranz, Johannes (2014)
Graded Multilabel Classification by Pairwise Comparisons.
2014 IEEE International Conference on Data Mining (ICDM 2014). Shenzhen, China
doi: 10.1109/ICDM.2014.102
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The task in multilabel classification is to predict for a given set of labels whether each individual label should be attached to an instance or not. Graded multilabel classification generalizes this setting by allowing to specify for each label a degree of membership on an ordinal scale. This setting can be frequently found in practice, for example when movies or books are assessed on a one-to-five star rating in multiple categories. In this paper, we propose to reformulate the problem in terms of preferences between the labels and their scales, which then be tackled by learning from pairwise comparisons. We present three different approaches which make use of this decomposition and show on three datasets that we are able to outperform baseline approaches. In particular, we show that our solution, which is able to model pairwise preferences across multiple scales, outperforms a straight-forward approach which considers the problem as a set of independent ordinal regression tasks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Brinker, Christian ; Loza Mencía, Eneldo ; Fürnkranz, Johannes
Art des Eintrags: Bibliographie
Titel: Graded Multilabel Classification by Pairwise Comparisons
Sprache: Englisch
Publikationsjahr: Dezember 2014
Ort: Shenzhen, China
Verlag: Curran Associates, IEEE
Veranstaltungstitel: 2014 IEEE International Conference on Data Mining (ICDM 2014)
Veranstaltungsort: Shenzhen, China
DOI: 10.1109/ICDM.2014.102
Kurzbeschreibung (Abstract):

The task in multilabel classification is to predict for a given set of labels whether each individual label should be attached to an instance or not. Graded multilabel classification generalizes this setting by allowing to specify for each label a degree of membership on an ordinal scale. This setting can be frequently found in practice, for example when movies or books are assessed on a one-to-five star rating in multiple categories. In this paper, we propose to reformulate the problem in terms of preferences between the labels and their scales, which then be tackled by learning from pairwise comparisons. We present three different approaches which make use of this decomposition and show on three datasets that we are able to outperform baseline approaches. In particular, we show that our solution, which is able to model pairwise preferences across multiple scales, outperforms a straight-forward approach which considers the problem as a set of independent ordinal regression tasks.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Knowledge Engineering
Hinterlegungsdatum: 26 Nov 2015 08:26
Letzte Änderung: 26 Nov 2015 08:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen