TU Darmstadt / ULB / TUbiblio

Learning multi-labeled bioacoustic samples with an unsupervised feature learning approach

Loza Mencía, Eneldo ; Nam, Jinseok ; Lee, Dong-Hyun
Hrsg.: Glotin, H. ; LeCun, Y. ; Mallat, Stéphane ; Tchernichovski, Ofer ; Artières, Thierry ; Halkias, Xanadu (2013)
Learning multi-labeled bioacoustic samples with an unsupervised feature learning approach.
Proceedings of Neural Information Scaled for Bioacoustics, from Neurons to Big Data.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Multi-label Bird Species Classification competition provides an excellent oppor- tunity to analyze the effectiveness of acoustic processing and mutlilabel learning. We propose an unsupervised feature extraction and generation approach based on latest advances in deep neural network learning, which can be applied generically to acoustic data. With state-of-the-art approaches from multilabel learning, we achieved top positions in the competition, only surpassed by teams with profound expertise in acoustic data processing.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2013
Herausgeber: Glotin, H. ; LeCun, Y. ; Mallat, Stéphane ; Tchernichovski, Ofer ; Artières, Thierry ; Halkias, Xanadu
Autor(en): Loza Mencía, Eneldo ; Nam, Jinseok ; Lee, Dong-Hyun
Art des Eintrags: Bibliographie
Titel: Learning multi-labeled bioacoustic samples with an unsupervised feature learning approach
Sprache: Englisch
Publikationsjahr: 2013
Veranstaltungstitel: Proceedings of Neural Information Scaled for Bioacoustics, from Neurons to Big Data
URL / URN: http://www.ke.tu-darmstadt.de/publications/papers/lozanam201...
Kurzbeschreibung (Abstract):

Multi-label Bird Species Classification competition provides an excellent oppor- tunity to analyze the effectiveness of acoustic processing and mutlilabel learning. We propose an unsupervised feature extraction and generation approach based on latest advances in deep neural network learning, which can be applied generically to acoustic data. With state-of-the-art approaches from multilabel learning, we achieved top positions in the competition, only surpassed by teams with profound expertise in acoustic data processing.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Knowledge Engineering
Hinterlegungsdatum: 25 Nov 2015 08:51
Letzte Änderung: 19 Dez 2018 14:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen