Zechner, C. ; Wadehn, F. ; Koeppl, H. (2014)
Sparse learning of Markovian population models in random environments.
IFAC 2014, The 19th World Congress of the International Federation of Automatic Control, Promoting automatic control for the benefit of humankind. Cape Town, South Africa (24.08.2014-29.08.2014)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Markovian population models are suitable abstractions to describe well-mixed interacting particle systems in situation where stochastic fluctuations are significant due to the involvement of low copy particles. In molecular biology, measurements on the single-cell level attest to this stochasticity and one is tempted to interpret such measurements across an isogenic cell population as different sample paths of one and the same Markov model. Over recent years evidence built up against this interpretation due to the presence of cell-to-cell variability stemming from factors other than intrinsic fluctuations. To account for this extrinsic variability, Markovian models in random environments need to be considered and a key emerging question is how to perform inference for such models. We model extrinsic variability by a random parametrization of all propensity functions. To detect which of those propensities have significant variability, we lay out a sparse learning procedure captured by a hierarchical Bayesian model whose evidence function is iteratively maximized using a variational Bayesian expectation-maximization algorithm.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2014 |
Autor(en): | Zechner, C. ; Wadehn, F. ; Koeppl, H. |
Art des Eintrags: | Bibliographie |
Titel: | Sparse learning of Markovian population models in random environments |
Sprache: | Englisch |
Publikationsjahr: | Januar 2014 |
Verlag: | Cornell |
Veranstaltungstitel: | IFAC 2014, The 19th World Congress of the International Federation of Automatic Control, Promoting automatic control for the benefit of humankind |
Veranstaltungsort: | Cape Town, South Africa |
Veranstaltungsdatum: | 24.08.2014-29.08.2014 |
URL / URN: | http://arxiv.org/abs/1401.4026 |
Kurzbeschreibung (Abstract): | Markovian population models are suitable abstractions to describe well-mixed interacting particle systems in situation where stochastic fluctuations are significant due to the involvement of low copy particles. In molecular biology, measurements on the single-cell level attest to this stochasticity and one is tempted to interpret such measurements across an isogenic cell population as different sample paths of one and the same Markov model. Over recent years evidence built up against this interpretation due to the presence of cell-to-cell variability stemming from factors other than intrinsic fluctuations. To account for this extrinsic variability, Markovian models in random environments need to be considered and a key emerging question is how to perform inference for such models. We model extrinsic variability by a random parametrization of all propensity functions. To detect which of those propensities have significant variability, we lay out a sparse learning procedure captured by a hierarchical Bayesian model whose evidence function is iteratively maximized using a variational Bayesian expectation-maximization algorithm. |
Freie Schlagworte: | Markov chains, Markovian models, stochastic fluctuations, molecular biology, Bayesian algorithm |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik |
Hinterlegungsdatum: | 04 Mär 2015 11:44 |
Letzte Änderung: | 23 Sep 2021 14:31 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |