Below, Lorenz von (2014)
The Stokes and Navier-Stokes equations in layer domains with and without a free surface.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
This thesis is concerned with certain aspects of the Stokes- and Navier-Stokes equations in layer domains with and without a free surface. We investigate the Stokes equations in layer domains in the endpoints L1 and Linfty of the scale of Lebesgue spaces Lp and show that the Stokes operator in solenoidal subspaces of L1 and Linfty generates a holomorphic semigroup if and only if the spacial dimension of the layer dimension is two. In the last chapter we investigate the singular limit of vanishing surface tension for a free boundary problem for the Navier-Stokes equations and show convergence of solutions in the Lp maximal regularity space.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2014 | ||||
Autor(en): | Below, Lorenz von | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | The Stokes and Navier-Stokes equations in layer domains with and without a free surface | ||||
Sprache: | Englisch | ||||
Referenten: | Geißert, PD Dr. Matthias ; Hieber, Prof. Dr. Matthias ; Shibata, Prof. Dr. Yoshihiro | ||||
Publikationsjahr: | 2014 | ||||
Datum der mündlichen Prüfung: | 16 Oktober 2014 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/4228 | ||||
Kurzbeschreibung (Abstract): | This thesis is concerned with certain aspects of the Stokes- and Navier-Stokes equations in layer domains with and without a free surface. We investigate the Stokes equations in layer domains in the endpoints L1 and Linfty of the scale of Lebesgue spaces Lp and show that the Stokes operator in solenoidal subspaces of L1 and Linfty generates a holomorphic semigroup if and only if the spacial dimension of the layer dimension is two. In the last chapter we investigate the singular limit of vanishing surface tension for a free boundary problem for the Navier-Stokes equations and show convergence of solutions in the Lp maximal regularity space. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-42288 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik > Analysis 04 Fachbereich Mathematik |
||||
Hinterlegungsdatum: | 09 Nov 2014 20:55 | ||||
Letzte Änderung: | 15 Feb 2016 15:26 | ||||
PPN: | |||||
Referenten: | Geißert, PD Dr. Matthias ; Hieber, Prof. Dr. Matthias ; Shibata, Prof. Dr. Yoshihiro | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 16 Oktober 2014 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |