TU Darmstadt / ULB / TUbiblio

Visual exploration of parameter influence on phylogenetic trees.

Hess, Martin ; Bremm, Sebastian ; Weissgraeber, Stephanie ; Hamacher, Kay ; Goesele, Michael ; Wiemeyer, Josef ; Landesberger von Antburg, Tatiana (2014)
Visual exploration of parameter influence on phylogenetic trees.
In: IEEE computer graphics and applications, 34 (2)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Hess, Martin ; Bremm, Sebastian ; Weissgraeber, Stephanie ; Hamacher, Kay ; Goesele, Michael ; Wiemeyer, Josef ; Landesberger von Antburg, Tatiana
Art des Eintrags: Bibliographie
Titel: Visual exploration of parameter influence on phylogenetic trees.
Sprache: Englisch
Publikationsjahr: 2014
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE computer graphics and applications
Jahrgang/Volume einer Zeitschrift: 34
(Heft-)Nummer: 2
Kurzbeschreibung (Abstract):

Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Computational Biology and Simulation
Hinterlegungsdatum: 01 Jul 2014 11:14
Letzte Änderung: 09 Dez 2021 11:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen