TU Darmstadt / ULB / TUbiblio

Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings

Zechner, C. ; Unger, M. ; Pelet, S. ; Peter, M. ; Koeppl, H. (2014)
Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings.
In: Nature methods, 11 (2)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Mathematical methods combined with measurements of single-cell dynamics provide a means to reconstruct intracellular processes that are only partly or indirectly accessible experimentally. To obtain reliable reconstructions, the pooling of measurements from several cells of a clonal population is mandatory. However, cell-to-cell variability originating from diverse sources poses computational challenges for such process reconstruction. We introduce a scalable Bayesian inference framework that properly accounts for population heterogeneity. The method allows inference of inaccessible molecular states and kinetic parameters; computation of Bayes factors for model selection; and dissection of intrinsic, extrinsic and technical noise. We show how additional single-cell readouts such as morphological features can be included in the analysis. We use the method to reconstruct the expression dynamics of a gene under an inducible promoter in yeast from time-lapse microscopy data.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Zechner, C. ; Unger, M. ; Pelet, S. ; Peter, M. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings
Sprache: Englisch
Publikationsjahr: Februar 2014
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature methods
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 2
URL / URN: http://www.nature.com/nmeth/journal/v11/n2/full/nmeth.2794.h...
Zugehörige Links:
Kurzbeschreibung (Abstract):

Mathematical methods combined with measurements of single-cell dynamics provide a means to reconstruct intracellular processes that are only partly or indirectly accessible experimentally. To obtain reliable reconstructions, the pooling of measurements from several cells of a clonal population is mandatory. However, cell-to-cell variability originating from diverse sources poses computational challenges for such process reconstruction. We introduce a scalable Bayesian inference framework that properly accounts for population heterogeneity. The method allows inference of inaccessible molecular states and kinetic parameters; computation of Bayes factors for model selection; and dissection of intrinsic, extrinsic and technical noise. We show how additional single-cell readouts such as morphological features can be included in the analysis. We use the method to reconstruct the expression dynamics of a gene under an inducible promoter in yeast from time-lapse microscopy data.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 11:41
Letzte Änderung: 24 Jul 2023 12:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen