TU Darmstadt / ULB / TUbiblio

Moment-based inference predicts bimodality in transient gene expression

Zechner, C. ; Ruess, J. ; Krenn, P. ; Pelet, S. ; Peter, M. ; Lygeros, J. ; Koeppl, H. (2012)
Moment-based inference predicts bimodality in transient gene expression.
In: Proceedings of the National Academy of Sciences of the United States of America, 109 (21)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Recent computational studies indicate that the molecular noise of a cellular process may be a rich source of information about process dynamics and parameters. However, accessing this source requires stochastic models that are usually difficult to analyze. Therefore, parameter estimation for stochastic systems using distribution measurements, as provided for instance by flow cytometry, currently remains limited to very small and simple systems. Here we propose a new method that makes use of low-order moments of the measured distribution and thereby keeps the essential parts of the provided information, while still staying applicable to systems of realistic size. We demonstrate how cell-to-cell variability can be incorporated into the analysis obviating the need for the ubiquitous assumption that the measurements stem from a homogeneous cell population. We demonstrate the method for a simple example of gene expression using synthetic data generated by stochastic simulation. Subsequently, we use time-lapsed flow cytometry data for the osmo-stress induced transcriptional response in budding yeast to calibrate a stochastic model, which is then used as a basis for predictions. Our results show that measurements of the mean and the variance can be enough to determine the model parameters, even if the measured distributions are not well-characterized by low-order moments only--e.g., if they are bimodal.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Zechner, C. ; Ruess, J. ; Krenn, P. ; Pelet, S. ; Peter, M. ; Lygeros, J. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Moment-based inference predicts bimodality in transient gene expression
Sprache: Englisch
Publikationsjahr: Mai 2012
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the National Academy of Sciences of the United States of America
Jahrgang/Volume einer Zeitschrift: 109
(Heft-)Nummer: 21
URL / URN: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361437/?tool=pm...
Kurzbeschreibung (Abstract):

Recent computational studies indicate that the molecular noise of a cellular process may be a rich source of information about process dynamics and parameters. However, accessing this source requires stochastic models that are usually difficult to analyze. Therefore, parameter estimation for stochastic systems using distribution measurements, as provided for instance by flow cytometry, currently remains limited to very small and simple systems. Here we propose a new method that makes use of low-order moments of the measured distribution and thereby keeps the essential parts of the provided information, while still staying applicable to systems of realistic size. We demonstrate how cell-to-cell variability can be incorporated into the analysis obviating the need for the ubiquitous assumption that the measurements stem from a homogeneous cell population. We demonstrate the method for a simple example of gene expression using synthetic data generated by stochastic simulation. Subsequently, we use time-lapsed flow cytometry data for the osmo-stress induced transcriptional response in budding yeast to calibrate a stochastic model, which is then used as a basis for predictions. Our results show that measurements of the mean and the variance can be enough to determine the model parameters, even if the measured distributions are not well-characterized by low-order moments only--e.g., if they are bimodal.

Freie Schlagworte: Computer Simulation, Flow Cytometry, Fungal,Fungal: physiology,Gene Expression Regulation, Genetic, Glycerol, Glycerol: metabolism, Mitogen-Activated Protein Kinases, Mitogen-Activated Protein Kinases: genetics,Models,Physiological,Physiological: genetics,Saccharomyces cerevisiae,Saccharomyces cerevisiae Proteins,Saccharomyces cerevisiae Proteins: genetics,Saccharomyces cerevisiae: genetics,Signal Transduction,Signal Transduction: genetics,Stochastic Processes,Stress,Water-Electrolyte Balance,Water-Electrolyte Balance: genetics
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 11:41
Letzte Änderung: 24 Jul 2023 13:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen