TU Darmstadt / ULB / TUbiblio

Optimal variational perturbations for the inference of stochastic reaction dynamics

Zechner, C. ; Nandy, P. ; Unger, M. ; Koeppl, H. (2012)
Optimal variational perturbations for the inference of stochastic reaction dynamics.
2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Although single-cell techniques are advancing rapidly, quantitative assessment of kinetic parameters is still characterized by ill-posedness and a large degree of uncertainty. In many standard experiments, where transcriptional activation is recorded upon application of a step-like external perturbation, cells almost instantaneously adapt such that only a few informative measurements can be obtained. Consequently, the information gain between subsequent experiments or time points is comparably low, which is reflected in a hardly decreasing parameter uncertainty. However, novel microfluidic techniques can be applied to synthesize more sophisticated perturbations to increase the informativeness of such time-course experiments. Here we introduce a mathematical framework to design optimal perturbations for the inference of stochastic reaction dynamics. Based on Bayesian statistics, we formulate a variational problem to find optimal temporal perturbations and solve it using a stochastic approximation algorithm. Simulations are provided for the realistic scenario of noisy and discrete-time measurements using two simple reaction networks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2012
Autor(en): Zechner, C. ; Nandy, P. ; Unger, M. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Optimal variational perturbations for the inference of stochastic reaction dynamics
Sprache: Englisch
Publikationsjahr: Dezember 2012
Verlag: IEEE
Veranstaltungstitel: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC)
URL / URN: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumbe...
Zugehörige Links:
Kurzbeschreibung (Abstract):

Although single-cell techniques are advancing rapidly, quantitative assessment of kinetic parameters is still characterized by ill-posedness and a large degree of uncertainty. In many standard experiments, where transcriptional activation is recorded upon application of a step-like external perturbation, cells almost instantaneously adapt such that only a few informative measurements can be obtained. Consequently, the information gain between subsequent experiments or time points is comparably low, which is reflected in a hardly decreasing parameter uncertainty. However, novel microfluidic techniques can be applied to synthesize more sophisticated perturbations to increase the informativeness of such time-course experiments. Here we introduce a mathematical framework to design optimal perturbations for the inference of stochastic reaction dynamics. Based on Bayesian statistics, we formulate a variational problem to find optimal temporal perturbations and solve it using a stochastic approximation algorithm. Simulations are provided for the realistic scenario of noisy and discrete-time measurements using two simple reaction networks.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 11:41
Letzte Änderung: 23 Sep 2021 14:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen