TU Darmstadt / ULB / TUbiblio

Recursive Bayesian estimation of stochastic rate constants from heterogeneous cell populations

Zechner, C. ; Pelet, S. ; Peter, M. ; Koeppl, H. (2011)
Recursive Bayesian estimation of stochastic rate constants from heterogeneous cell populations.
In: IEEE Conference on Decision and Control and European Control Conference
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Robust estimation of kinetic parameters of intracellular processes requires large amounts of quantitative data. Due to the high uncertainty of such processes and the fact that recent single-cell measurement techniques have limited resolution and dimensionality, estimation should pool recordings of multiple cells of an isogenic cell population. However, experimental results have shown that several factors such as cell volume or cell-cycle stage can drastically affect signaling as well as protein expression, leading to inherent heterogeneities in the cell population measurements. Here we present a recursive Bayesian estimation procedure for stochastic kinetic model calibration using heterogeneous cell population data. While obtaining optimal estimates for the rate constants, this approach allows to reconstruct missing species as well as to quantitatively capture extrinsic variability. The proposed algorithm is applied to a model of the osmo-stress induced MAPK Hog1 activation in the cytoplasm and its translocation to the nucleus.

Typ des Eintrags: Artikel
Erschienen: 2011
Autor(en): Zechner, C. ; Pelet, S. ; Peter, M. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Recursive Bayesian estimation of stochastic rate constants from heterogeneous cell populations
Sprache: Deutsch
Publikationsjahr: Dezember 2011
Ort: Orlando, Florida
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Conference on Decision and Control and European Control Conference
URL / URN: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumbe...
Kurzbeschreibung (Abstract):

Robust estimation of kinetic parameters of intracellular processes requires large amounts of quantitative data. Due to the high uncertainty of such processes and the fact that recent single-cell measurement techniques have limited resolution and dimensionality, estimation should pool recordings of multiple cells of an isogenic cell population. However, experimental results have shown that several factors such as cell volume or cell-cycle stage can drastically affect signaling as well as protein expression, leading to inherent heterogeneities in the cell population measurements. Here we present a recursive Bayesian estimation procedure for stochastic kinetic model calibration using heterogeneous cell population data. While obtaining optimal estimates for the rate constants, this approach allows to reconstruct missing species as well as to quantitatively capture extrinsic variability. The proposed algorithm is applied to a model of the osmo-stress induced MAPK Hog1 activation in the cytoplasm and its translocation to the nucleus.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 11:41
Letzte Änderung: 23 Sep 2021 14:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen