Zechner, C. ; Deb, S. ; Koeppl, H. (2013)
Marginal dynamics of stochastic biochemical networks in random environments.
2013 European Control Conference (ECC). Zürich (17.07.2013-19.07.2013)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Stochastic simulation algorithms provide a powerful means to understand complex biochemical processes as well as to solve the inverse problem of reconstructing hidden states and parameters from experimental single-cell data. At presence, a repertoire of efficient algorithms for simulating and calibrating stochastic reaction networks is available. However, most of these approaches do not account for the fact that each cell of a clonal population is exposed to a random extrinsic environment, i.e., the agglomerate of so-called extrinsic factors such as cell size, shape or cell cycle stage. We recently proposed a dynamic description of stochastic chemical kinetics in random but unknown extrinsic environments, reflected by a stochastic process where uncertain parameters are marginalized out. In this work we further investigate that process and provide additional analytical results. We demonstrate the marginalization using several biologically relevant parameter distributions and derive exact waiting-time distributions. We further show that the marginalized process model can achieve a variance reduction in the context of parameter inference.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2013 |
Autor(en): | Zechner, C. ; Deb, S. ; Koeppl, H. |
Art des Eintrags: | Bibliographie |
Titel: | Marginal dynamics of stochastic biochemical networks in random environments |
Sprache: | Englisch |
Publikationsjahr: | 2013 |
Ort: | Zürich |
Verlag: | IEEE |
Veranstaltungstitel: | 2013 European Control Conference (ECC) |
Veranstaltungsort: | Zürich |
Veranstaltungsdatum: | 17.07.2013-19.07.2013 |
URL / URN: | http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669606 |
Kurzbeschreibung (Abstract): | Stochastic simulation algorithms provide a powerful means to understand complex biochemical processes as well as to solve the inverse problem of reconstructing hidden states and parameters from experimental single-cell data. At presence, a repertoire of efficient algorithms for simulating and calibrating stochastic reaction networks is available. However, most of these approaches do not account for the fact that each cell of a clonal population is exposed to a random extrinsic environment, i.e., the agglomerate of so-called extrinsic factors such as cell size, shape or cell cycle stage. We recently proposed a dynamic description of stochastic chemical kinetics in random but unknown extrinsic environments, reflected by a stochastic process where uncertain parameters are marginalized out. In this work we further investigate that process and provide additional analytical results. We demonstrate the marginalization using several biologically relevant parameter distributions and derive exact waiting-time distributions. We further show that the marginalized process model can achieve a variance reduction in the context of parameter inference. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik |
Hinterlegungsdatum: | 04 Apr 2014 11:41 |
Letzte Änderung: | 24 Mai 2024 09:24 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |