TU Darmstadt / ULB / TUbiblio

Optimal Perturbations for the Identification of Stochastic Reaction Dynamics

Nandy, P. ; Unger, M. ; Zechner, C. ; Koeppl, H. (2012)
Optimal Perturbations for the Identification of Stochastic Reaction Dynamics.
16th IFAC Symposium on System Identification.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Identification of stochastic reaction dynamics inside the cell is hampered by the low-dimensional readouts available with today's measurement technologies. Moreover, such processes are poorly excited by standard experimental protocols, making identification even more ill-posed. Recent technological advances provide means to design and apply complex extra-cellular stimuli. Based on an information-theoretic setting we present novel Monte Carlo sampling techniques to determine optimal temporal excitation profiles for such stochastic processes. We give a new result for the controlled birth-death process and provide a proof of principle by considering a simple model of regulated gene expression.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2012
Autor(en): Nandy, P. ; Unger, M. ; Zechner, C. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Optimal Perturbations for the Identification of Stochastic Reaction Dynamics
Sprache: Englisch
Publikationsjahr: Juli 2012
Verlag: Elsevier
Veranstaltungstitel: 16th IFAC Symposium on System Identification
URL / URN: http://www.ifac-papersonline.net/Detailed/54661.html
Zugehörige Links:
Kurzbeschreibung (Abstract):

Identification of stochastic reaction dynamics inside the cell is hampered by the low-dimensional readouts available with today's measurement technologies. Moreover, such processes are poorly excited by standard experimental protocols, making identification even more ill-posed. Recent technological advances provide means to design and apply complex extra-cellular stimuli. Based on an information-theoretic setting we present novel Monte Carlo sampling techniques to determine optimal temporal excitation profiles for such stochastic processes. We give a new result for the controlled birth-death process and provide a proof of principle by considering a simple model of regulated gene expression.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 11:40
Letzte Änderung: 23 Sep 2021 14:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen