Koeppl, H. ; Zechner, C. ; Ganguly, A. ; Pelet, S. ; Peter, M. (2012)
Accounting for extrinsic variability in the estimation of stochastic rate constants.
In: International Journal of Robust and Nonlinear Control, 22 (10)
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Single-cell recordings of transcriptional and post-transcriptional processes reveal the inherent stochasticity of cellular events. However, to a large extent the observed variability in isogenic cell populations is due to extrinsic factors, such as difference in expression capacity, cell volume and cell cycle stage - to name a few. Thus, such experimental data represents a convolution of effects from stochastic kinetics and extrinsic noise sources. Recent parameter inference schemes for single-cell data just account for variability due to molecular noise. Here we present a Bayesian inference scheme which de-convolutes the two sources of variability and enables us to obtain optimal estimates of stochastic rate constants of low copy-number events and extract statistical information about cell-to-cell variability. In contrast to previous attempts, we model extrinsic noise by a variability in the abundance of mass-conserved species, rather than a variability in kinetic parameters. We apply the scheme to a simple model of the osmo-stress induced transcriptional activation in budding yeast.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2012 |
Autor(en): | Koeppl, H. ; Zechner, C. ; Ganguly, A. ; Pelet, S. ; Peter, M. |
Art des Eintrags: | Bibliographie |
Titel: | Accounting for extrinsic variability in the estimation of stochastic rate constants |
Sprache: | Englisch |
Publikationsjahr: | Juli 2012 |
Verlag: | Wiley-Blackwell |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | International Journal of Robust and Nonlinear Control |
Jahrgang/Volume einer Zeitschrift: | 22 |
(Heft-)Nummer: | 10 |
URL / URN: | http://doi.wiley.com/10.1002/rnc.2804 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Single-cell recordings of transcriptional and post-transcriptional processes reveal the inherent stochasticity of cellular events. However, to a large extent the observed variability in isogenic cell populations is due to extrinsic factors, such as difference in expression capacity, cell volume and cell cycle stage - to name a few. Thus, such experimental data represents a convolution of effects from stochastic kinetics and extrinsic noise sources. Recent parameter inference schemes for single-cell data just account for variability due to molecular noise. Here we present a Bayesian inference scheme which de-convolutes the two sources of variability and enables us to obtain optimal estimates of stochastic rate constants of low copy-number events and extract statistical information about cell-to-cell variability. In contrast to previous attempts, we model extrinsic noise by a variability in the abundance of mass-conserved species, rather than a variability in kinetic parameters. We apply the scheme to a simple model of the osmo-stress induced transcriptional activation in budding yeast. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik |
Hinterlegungsdatum: | 04 Apr 2014 12:25 |
Letzte Änderung: | 23 Sep 2021 14:31 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |