TU Darmstadt / ULB / TUbiblio

Accounting for extrinsic variability in the estimation of stochastic rate constants

Koeppl, H. ; Zechner, C. ; Ganguly, A. ; Pelet, S. ; Peter, M. (2012)
Accounting for extrinsic variability in the estimation of stochastic rate constants.
In: International Journal of Robust and Nonlinear Control, 22 (10)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Single-cell recordings of transcriptional and post-transcriptional processes reveal the inherent stochasticity of cellular events. However, to a large extent the observed variability in isogenic cell populations is due to extrinsic factors, such as difference in expression capacity, cell volume and cell cycle stage - to name a few. Thus, such experimental data represents a convolution of effects from stochastic kinetics and extrinsic noise sources. Recent parameter inference schemes for single-cell data just account for variability due to molecular noise. Here we present a Bayesian inference scheme which de-convolutes the two sources of variability and enables us to obtain optimal estimates of stochastic rate constants of low copy-number events and extract statistical information about cell-to-cell variability. In contrast to previous attempts, we model extrinsic noise by a variability in the abundance of mass-conserved species, rather than a variability in kinetic parameters. We apply the scheme to a simple model of the osmo-stress induced transcriptional activation in budding yeast.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Koeppl, H. ; Zechner, C. ; Ganguly, A. ; Pelet, S. ; Peter, M.
Art des Eintrags: Bibliographie
Titel: Accounting for extrinsic variability in the estimation of stochastic rate constants
Sprache: Englisch
Publikationsjahr: Juli 2012
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Robust and Nonlinear Control
Jahrgang/Volume einer Zeitschrift: 22
(Heft-)Nummer: 10
URL / URN: http://doi.wiley.com/10.1002/rnc.2804
Zugehörige Links:
Kurzbeschreibung (Abstract):

Single-cell recordings of transcriptional and post-transcriptional processes reveal the inherent stochasticity of cellular events. However, to a large extent the observed variability in isogenic cell populations is due to extrinsic factors, such as difference in expression capacity, cell volume and cell cycle stage - to name a few. Thus, such experimental data represents a convolution of effects from stochastic kinetics and extrinsic noise sources. Recent parameter inference schemes for single-cell data just account for variability due to molecular noise. Here we present a Bayesian inference scheme which de-convolutes the two sources of variability and enables us to obtain optimal estimates of stochastic rate constants of low copy-number events and extract statistical information about cell-to-cell variability. In contrast to previous attempts, we model extrinsic noise by a variability in the abundance of mass-conserved species, rather than a variability in kinetic parameters. We apply the scheme to a simple model of the osmo-stress induced transcriptional activation in budding yeast.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 12:25
Letzte Änderung: 23 Sep 2021 14:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen