TU Darmstadt / ULB / TUbiblio

Resilience to leaking - dynamic systems modeling of information security.

Hamacher, Kay (2012)
Resilience to leaking - dynamic systems modeling of information security.
In: PloS one, 7 (12)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Leaking of confidential material is a major threat to information security within organizations and to society as a whole. This insight has gained traction in the political realm since the activities of Wikileaks, which hopes to attack 'unjust' systems or 'conspiracies'. Eventually, such threats to information security rely on a biologistic argument on the benefits and drawbacks that uncontrolled leaking might pose for 'just' and 'unjust' entities. Such biological metaphors are almost exclusively based on the economic advantage of participants. Here, I introduce a mathematical model of the complex dynamics implied by leaking. The complex interactions of adversaries are modeled by coupled logistic equations including network effects of econo-communication networks. The modeling shows, that there might arise situations where the leaking envisioned and encouraged by Wikileaks and the like can strengthen the defending entity (the 'conspiracy'). In particular, the only severe impact leaking can have on an organization seems to originate in the exploitation of leaks by another entity the organization competes with. Therefore, the model suggests that leaks can be used as a `tactical mean' in direct adversary relations, but do not necessarily increase public benefit and societal immunization to 'conspiracies'. Furthermore, within the model the exploitation of the (open) competition between entities seems to be a more promising approach to control malicious organizations : divide-et-impera policies triumph here.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Hamacher, Kay
Art des Eintrags: Bibliographie
Titel: Resilience to leaking - dynamic systems modeling of information security.
Sprache: Englisch
Publikationsjahr: 2012
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PloS one
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 12
Kurzbeschreibung (Abstract):

Leaking of confidential material is a major threat to information security within organizations and to society as a whole. This insight has gained traction in the political realm since the activities of Wikileaks, which hopes to attack 'unjust' systems or 'conspiracies'. Eventually, such threats to information security rely on a biologistic argument on the benefits and drawbacks that uncontrolled leaking might pose for 'just' and 'unjust' entities. Such biological metaphors are almost exclusively based on the economic advantage of participants. Here, I introduce a mathematical model of the complex dynamics implied by leaking. The complex interactions of adversaries are modeled by coupled logistic equations including network effects of econo-communication networks. The modeling shows, that there might arise situations where the leaking envisioned and encouraged by Wikileaks and the like can strengthen the defending entity (the 'conspiracy'). In particular, the only severe impact leaking can have on an organization seems to originate in the exploitation of leaks by another entity the organization competes with. Therefore, the model suggests that leaks can be used as a `tactical mean' in direct adversary relations, but do not necessarily increase public benefit and societal immunization to 'conspiracies'. Furthermore, within the model the exploitation of the (open) competition between entities seems to be a more promising approach to control malicious organizations : divide-et-impera policies triumph here.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
?? fb10_mikrobiologie ??
10 Fachbereich Biologie > Computational Biology and Simulation
Hinterlegungsdatum: 18 Dez 2012 08:47
Letzte Änderung: 24 Apr 2018 10:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen