Nesensohn, Manuel (2012)
Lp-theory for a class of viscoelastic fluids with and without a free surface.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
This thesis deals with systems of nonlinear partial differential equations, which describe the motion of a certain class of non-Newtonian fluids. More precisely, the considered fluids are generalized Newtonian fluids as well as generalized viscoelastic fluids (a generalization of the Oldroyd-B fluid). By completing these models with appropriate initial and boundary conditions, we end up with a nonlinear system of partial differential equations. We investigate these on existence and uniqueness of strong Lp-solutions. Firstly, the generalized viscoelastic fluid model is analyzed on a fixed domain with "no-slip" as well as "perfect-slip" boundary conditions. For bounded domains, local existence of a unique solution is shown. Under the additional assumption, that the viscosity is constant, this result is transferred to a large class of unbounded domains in the case of "no-slip" boundary conditions as well as on the half-space in case of "perfect-slip" boundary conditions. Secondly, a two-phase problem with surface tension is investigated, where both phases consist of generalized Newtonian fluids. At the initial configuration, it is assumed that both fluids are separated by a hypersurface, which is given as a graph of a height function. We prove the existence and uniqueness of a strong solution on any finite time interval, provided the initial values are sufficiently small. It is shown, that the hypersurface, which separates the fluids, is given as the graph of a height function for all considered times. Finally, we return to the generalized viscoelastic fluids. Neglecting the effect of surface tension, a corresponding one-phase problem in Lagrangian coordinates is analyzed. It is assumed that the boundary of the initial domain is compact. Local existence and uniqueness of strong solution of the problem in the Lagrangian formulation is proven.
Typ des Eintrags: |
Dissertation
|
Erschienen: |
2012 |
Autor(en): |
Nesensohn, Manuel |
Art des Eintrags: |
Erstveröffentlichung |
Titel: |
Lp-theory for a class of viscoelastic fluids with and without a free surface |
Sprache: |
Englisch |
Referenten: |
Geißert, PD Dr. Matthias ; Saal, Prof. Dr. Jürgen ; Shibata, Prof. Dr. Yoshihiro |
Publikationsjahr: |
21 August 2012 |
Datum der mündlichen Prüfung: |
16 April 2012 |
URL / URN: |
urn:nbn:de:tuda-tuprints-30697 |
Kurzbeschreibung (Abstract): |
This thesis deals with systems of nonlinear partial differential equations, which describe the motion of a certain class of non-Newtonian fluids. More precisely, the considered fluids are generalized Newtonian fluids as well as generalized viscoelastic fluids (a generalization of the Oldroyd-B fluid). By completing these models with appropriate initial and boundary conditions, we end up with a nonlinear system of partial differential equations. We investigate these on existence and uniqueness of strong Lp-solutions. Firstly, the generalized viscoelastic fluid model is analyzed on a fixed domain with "no-slip" as well as "perfect-slip" boundary conditions. For bounded domains, local existence of a unique solution is shown. Under the additional assumption, that the viscosity is constant, this result is transferred to a large class of unbounded domains in the case of "no-slip" boundary conditions as well as on the half-space in case of "perfect-slip" boundary conditions. Secondly, a two-phase problem with surface tension is investigated, where both phases consist of generalized Newtonian fluids. At the initial configuration, it is assumed that both fluids are separated by a hypersurface, which is given as a graph of a height function. We prove the existence and uniqueness of a strong solution on any finite time interval, provided the initial values are sufficiently small. It is shown, that the hypersurface, which separates the fluids, is given as the graph of a height function for all considered times. Finally, we return to the generalized viscoelastic fluids. Neglecting the effect of surface tension, a corresponding one-phase problem in Lagrangian coordinates is analyzed. It is assumed that the boundary of the initial domain is compact. Local existence and uniqueness of strong solution of the problem in the Lagrangian formulation is proven. |
Alternatives oder übersetztes Abstract: |
Alternatives Abstract | Sprache |
---|
Die vorliegende Dissertation beschäftigt sich mit nichtlinearen partiellen Differentialgleichungssystemen, die die Bewegung bestimmter Klassen von nicht-Newtonschen Fluiden modellieren. Es werden zum einen verallgemeinerte Newtonsche und zum anderen verallgemeinerte viskoelastische Fluide betrachtet. Die letzteren stellen dabei eine Verallgemeinerung des Oldroyd-B Fluides dar. Die Wohlgestelltheit der um Anfangs- und Randbedingungen vervollständigten Systeme wird im Sinne der Theorie starker Lp-Lösungen untersucht. Erst wird das Modell für verallgemeinerte viskoelastische Fluide auf einem festen Gebiet mit "no-slip" sowie mit "perfect-slip" Randbedingungen analysiert. Für beschränkte Gebiete wird zeitlokale Existenz einer eindeutigen Lösung gezeigt. Unter der zusätzlichen Annahme, dass die Viskosität konstant ist, wird dieses Resultat auf eine große Klasse unbeschränkter Gebiete im Falle von "no-slip" Randbedingungen sowie auf den Halbraum im Falle von "perfect-slip" Randbedingungen übertragen. Der zweite Teil der Arbeit beschäftigt sich mit einem Zweiphasenproblem mit Oberflächenspannung, bei dem beide Phasen aus verallgemeinerten Newtonschen Flüssigkeiten bestehen. Es wird eine Situation betrachtet, bei der beide Fluide zum Anfangszeitpunkt durch eine Hyperfläche getrennt sind, die als Graph einer Höhenfunktion gegeben ist. Es wird die Existenz und Eindeutigkeit einer starken Lösung auf beliebigen endlichen Zeitintervallen für hinreichend kleine Anfangswerte bewiesen. Weiter wird gezeigt, dass die Hyperfläche, die die Fluide trennt, für alle betrachteten Zeiten als Graph einer Höhenfunktion gegeben ist. Anschließend wird noch einmal das Modell für verallgemeinerte viskoelastische Flüssigkeiten aus dem ersten Teil aufgegriffen. Unter Vernachlässigung der Oberflächenspannung wird ein zugehöriges Einphasenproblem in Lagrange-Koordinaten analysiert. Es wird eine Situation betrachtet, bei der der Rand des betrachteten Gebiets zum Anfangszeitpunkt kompakt ist. Für das zu Lagrange-Koordinaten transformierte Problem wird die zeitlokale Existenz und Eindeutigkeit einer starken Lösung bewiesen. | Deutsch |
|
Schlagworte: |
Einzelne Schlagworte | Sprache |
---|
Non-Newtonian fluids, Nonlinear viscoelastic fluids, Oldroyd-B fluids, generalized Newtonian fluids, PDEs in connection with fluid mechanics, Strong Lp solutions, Boundary value problems, Free boundary problems, Two-phase flows | Englisch |
|
Sachgruppe der Dewey Dezimalklassifikatin (DDC): |
500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fachbereich(e)/-gebiet(e): |
04 Fachbereich Mathematik 04 Fachbereich Mathematik > Analysis |
Hinterlegungsdatum: |
23 Aug 2012 07:15 |
Letzte Änderung: |
05 Mär 2013 10:02 |
PPN: |
|
Referenten: |
Geißert, PD Dr. Matthias ; Saal, Prof. Dr. Jürgen ; Shibata, Prof. Dr. Yoshihiro |
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: |
16 April 2012 |
Schlagworte: |
Einzelne Schlagworte | Sprache |
---|
Non-Newtonian fluids, Nonlinear viscoelastic fluids, Oldroyd-B fluids, generalized Newtonian fluids, PDEs in connection with fluid mechanics, Strong Lp solutions, Boundary value problems, Free boundary problems, Two-phase flows | Englisch |
|
Export: |
|
Suche nach Titel in: |
TUfind oder in Google |
|
Frage zum Eintrag |
Optionen (nur für Redakteure)
|
Redaktionelle Details anzeigen |