Engel, Michael ; Steiner, Mathias ; Lombardo, Antonio ; Ferrari, Andrea C. ; Löhneysen, Hilbert v. ; Avouris, Phaedon ; Krupke, Ralph (2012)
Light–matter interaction in a microcavity-controlled graphene transistor.
In: Nature Communications, 3
doi: 10.1038/ncomms1911
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light–matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2012 |
Autor(en): | Engel, Michael ; Steiner, Mathias ; Lombardo, Antonio ; Ferrari, Andrea C. ; Löhneysen, Hilbert v. ; Avouris, Phaedon ; Krupke, Ralph |
Art des Eintrags: | Bibliographie |
Titel: | Light–matter interaction in a microcavity-controlled graphene transistor |
Sprache: | Englisch |
Publikationsjahr: | 19 Juni 2012 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Nature Communications |
Jahrgang/Volume einer Zeitschrift: | 3 |
DOI: | 10.1038/ncomms1911 |
Kurzbeschreibung (Abstract): | Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light–matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness. |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Molekulare Nanostrukturen 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften |
Hinterlegungsdatum: | 16 Aug 2012 07:12 |
Letzte Änderung: | 05 Mär 2013 10:02 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |