TU Darmstadt / ULB / TUbiblio

Light–matter interaction in a microcavity-controlled graphene transistor

Engel, Michael ; Steiner, Mathias ; Lombardo, Antonio ; Ferrari, Andrea C. ; Löhneysen, Hilbert v. ; Avouris, Phaedon ; Krupke, Ralph (2012)
Light–matter interaction in a microcavity-controlled graphene transistor.
In: Nature Communications, 3
doi: 10.1038/ncomms1911
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light–matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Engel, Michael ; Steiner, Mathias ; Lombardo, Antonio ; Ferrari, Andrea C. ; Löhneysen, Hilbert v. ; Avouris, Phaedon ; Krupke, Ralph
Art des Eintrags: Bibliographie
Titel: Light–matter interaction in a microcavity-controlled graphene transistor
Sprache: Englisch
Publikationsjahr: 19 Juni 2012
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Communications
Jahrgang/Volume einer Zeitschrift: 3
DOI: 10.1038/ncomms1911
Kurzbeschreibung (Abstract):

Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light–matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Molekulare Nanostrukturen
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 16 Aug 2012 07:12
Letzte Änderung: 05 Mär 2013 10:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen