Dzivenko, D. A. and Horvath-Bordon, E. and Zerr, A. and Miehe, G. and Kroll, P. and Boehler, R. and McMillan, P. F. and Riedel, R. (2008):
High-pressure high-temperature synthesis of novel binary and ternary nitride phases of group 4 and 14 elements.
In: Journal of Physics: Conference Series, 121 (6), pp. 062003. IOP Publishing, ISSN 1742-6596,
[Article]
Abstract
Our recent experiments on high-pressure high-temperature synthesis of novel ternary nitrides of group 4 and 14 elements are presented. Dense carbon nitride imide, C2N2(NH), was synthesized for the first time in a laser heated diamond anvil cell (LH-DAC) at pressures above 27 GPa and temperatures around 2000 K. Based on results of the electron diffraction-, EELS-and SIMS-measurements combined with theoretical calculations the structure of this new C-N-H phase was suggested to be of the defect-wurtzite type. Farther, macroscopic amounts of a new oxynitride of zirconium having cubic Th3P4-type structure, c-Zr2.86(N0.88O0.12)4, were synthesized at high pressures and temperatures using a multi-anvil apparatus. Earlier this structure was observed for binary nitrides of zirconium(IV) and hafnium(IV) synthesized in microscopic amounts in a LH-DAC. The lattice parameter of c-Zr2.86(N0.88O0.12)4 was found to be a0 = 6.7549(1) Å which is slightly larger than that of c-Zr3N4. Isotropic bulk and shear moduli of c-Zr2.86(N0.88O0.12)4 of B0 = 219 GPa and G0 = 96 GPa, respectively, were determined from the compression and nanoindentation measurements. The Vickers microhardness, HV(1), of the porous (about 30 vol. %) sample of c-Zr2.86(N0.88O0.12)4 was measured to be 12 GPa, similar to that of single crystal δ-ZrN.
Item Type: | Article |
---|---|
Erschienen: | 2008 |
Creators: | Dzivenko, D. A. and Horvath-Bordon, E. and Zerr, A. and Miehe, G. and Kroll, P. and Boehler, R. and McMillan, P. F. and Riedel, R. |
Title: | High-pressure high-temperature synthesis of novel binary and ternary nitride phases of group 4 and 14 elements |
Language: | English |
Abstract: | Our recent experiments on high-pressure high-temperature synthesis of novel ternary nitrides of group 4 and 14 elements are presented. Dense carbon nitride imide, C2N2(NH), was synthesized for the first time in a laser heated diamond anvil cell (LH-DAC) at pressures above 27 GPa and temperatures around 2000 K. Based on results of the electron diffraction-, EELS-and SIMS-measurements combined with theoretical calculations the structure of this new C-N-H phase was suggested to be of the defect-wurtzite type. Farther, macroscopic amounts of a new oxynitride of zirconium having cubic Th3P4-type structure, c-Zr2.86(N0.88O0.12)4, were synthesized at high pressures and temperatures using a multi-anvil apparatus. Earlier this structure was observed for binary nitrides of zirconium(IV) and hafnium(IV) synthesized in microscopic amounts in a LH-DAC. The lattice parameter of c-Zr2.86(N0.88O0.12)4 was found to be a0 = 6.7549(1) Å which is slightly larger than that of c-Zr3N4. Isotropic bulk and shear moduli of c-Zr2.86(N0.88O0.12)4 of B0 = 219 GPa and G0 = 96 GPa, respectively, were determined from the compression and nanoindentation measurements. The Vickers microhardness, HV(1), of the porous (about 30 vol. %) sample of c-Zr2.86(N0.88O0.12)4 was measured to be 12 GPa, similar to that of single crystal δ-ZrN. |
Journal or Publication Title: | Journal of Physics: Conference Series |
Journal volume: | 121 |
Number: | 6 |
Publisher: | IOP Publishing |
Divisions: | 11 Department of Materials and Earth Sciences > Material Science > Dispersive Solids 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences |
Date Deposited: | 16 Apr 2012 08:14 |
Official URL: | http://dx.doi.org/10.1088/1742-6596/121/6/062003 |
Identification Number: | doi:10.1088/1742-6596/121/6/062003 |
Funders: | We acknowledge financial supports of the Deutsche Forschungsgemeinschaft (Bonn, Germany), We acknowledge financial supports of the Fonds der Chemischen Industrie (Frankfurt, Germany),, We acknowledge financial supports of the Heisenberg-Fellowship program (Germany),, We acknowledge financial supports of the Adolf-Messer-Foundation (Germany), We acknowledge financial supports of the Engineering and Physical Science Research Council (UK) |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |