TU Darmstadt / ULB / TUbiblio

Correlation widths in quantum-chaotic scattering

Dietz, B. and Richter, A. and Weidenmüller, H. A. :
Correlation widths in quantum-chaotic scattering.
[Online-Edition: http://dx.doi.org/10.1016/j.physletb.2011.02.009]
In: Physics Letters B, 697 (4) p. 313. ISSN 03702693
[Article] , (2011)

Official URL: http://dx.doi.org/10.1016/j.physletb.2011.02.009
Item Type: Article
Erschienen: 2011
Creators: Dietz, B. and Richter, A. and Weidenmüller, H. A.
Title: Correlation widths in quantum-chaotic scattering
Language: English
Journal or Publication Title: Physics Letters B
Volume: 697
Number: 4
Divisions: 05 Department of Physics
05 Department of Physics > Institute of Nuclear Physics
Zentrale Einrichtungen
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 634: Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments at Low Momentum Transfer at the Superconducting Darmstadt Accelerator (S-DALINAC)
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 634: Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments at Low Momentum Transfer at the Superconducting Darmstadt Accelerator (S-DALINAC) > C: Fundamentale Experimente
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 634: Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments at Low Momentum Transfer at the Superconducting Darmstadt Accelerator (S-DALINAC) > C: Fundamentale Experimente > C4: Quantenchaos und wellendynamisches Chaos
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres
DFG-Collaborative Research Centres (incl. Transregio)
Date Deposited: 07 Dec 2011 14:18
Official URL: http://dx.doi.org/10.1016/j.physletb.2011.02.009
Identification Number: doi:10.1016/j.physletb.2011.02.009
Alternative Abstract:
Alternative abstract Language
An important parameter to characterize the scattering matrix S for quantum-chaotic scattering is the width Γcorr of the S-matrix autocorrelation function. We show that the “Weisskopf estimate” d/(2π)c∑Tc (where d is the mean resonance spacing, Tc with 0⩽Tc⩽1 the “transmission coefficient” in channel c and where the sum runs over all channels) provides a good approximation to Γcorr even when the number of channels is small. That same conclusion applies also to the cross-section correlation function.English
Export:

Optionen (nur für Redakteure)

View Item View Item