Wolburg, H. ; Willbold, E. ; Layer, Paul G. (1991)
Müller glia endfeet, a basal lamina and the polarity of retinal layers form properly in vitro only in the presence of marginal pigmented epithelium.
In: Cell and tissue research, 264 (3)
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Dissociated embryonic chicken retinal cells regenerate in rotary culture into cellular spheres that consist of subareas expressing all three nuclear layers in an inside-out sequence (rosetted vitroretinae). However, when pigmented cells from the eye margin (peripheral retinal pigment epithelium) are added to the system, the sequence of layers is identical with that of an in-situ retina (laminar vitroretinae). In order to elucidate further the lamina-stabilizing effect exerted by the retinal pigment epithelium, we have compared both systems, laying particular emphasis on the ultrastructure of the basal lamina and of Müller glia processes. Ultrastructurally, in both systems, an outer limiting membrane, inner segments of photoreceptors and the segregation of cell bodies into three cell layers develop properly. Synapses are detectable in a premature state, although only in the inner plexiform layer of laminar vitroretinae. Although present in both systems, radial processes of juvenile Müller glia cells are properly fixed at their endfeet only in laminar vitroretinae, since a basal lamina is only expressed here. Large amounts of laminin are detected immunohistochemically within the retinal pigment epithelium and along a basal stalk that reaches inside the laminar vitroretinae. We conclude that the peripheral retinal pigment epithelium is essential for the expression of a basal lamina in vitro. Moreover, the basal lamina may be responsible both for stabilizing the correct polarity of retinal layers and for the final differentiation of the Müller cells.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 1991 |
Autor(en): | Wolburg, H. ; Willbold, E. ; Layer, Paul G. |
Art des Eintrags: | Bibliographie |
Titel: | Müller glia endfeet, a basal lamina and the polarity of retinal layers form properly in vitro only in the presence of marginal pigmented epithelium. |
Sprache: | Englisch |
Publikationsjahr: | 1991 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Cell and tissue research |
Jahrgang/Volume einer Zeitschrift: | 264 |
(Heft-)Nummer: | 3 |
Kurzbeschreibung (Abstract): | Dissociated embryonic chicken retinal cells regenerate in rotary culture into cellular spheres that consist of subareas expressing all three nuclear layers in an inside-out sequence (rosetted vitroretinae). However, when pigmented cells from the eye margin (peripheral retinal pigment epithelium) are added to the system, the sequence of layers is identical with that of an in-situ retina (laminar vitroretinae). In order to elucidate further the lamina-stabilizing effect exerted by the retinal pigment epithelium, we have compared both systems, laying particular emphasis on the ultrastructure of the basal lamina and of Müller glia processes. Ultrastructurally, in both systems, an outer limiting membrane, inner segments of photoreceptors and the segregation of cell bodies into three cell layers develop properly. Synapses are detectable in a premature state, although only in the inner plexiform layer of laminar vitroretinae. Although present in both systems, radial processes of juvenile Müller glia cells are properly fixed at their endfeet only in laminar vitroretinae, since a basal lamina is only expressed here. Large amounts of laminin are detected immunohistochemically within the retinal pigment epithelium and along a basal stalk that reaches inside the laminar vitroretinae. We conclude that the peripheral retinal pigment epithelium is essential for the expression of a basal lamina in vitro. Moreover, the basal lamina may be responsible both for stabilizing the correct polarity of retinal layers and for the final differentiation of the Müller cells. |
Fachbereich(e)/-gebiet(e): | 10 Fachbereich Biologie ?? fb10_zoologie ?? 10 Fachbereich Biologie > Developmental Biology and Neurogenetics |
Hinterlegungsdatum: | 21 Nov 2011 13:00 |
Letzte Änderung: | 05 Mär 2013 09:56 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |