TU Darmstadt / ULB / TUbiblio

Acetylcholinesterase in cell adhesion, neurite growth and network formation.

Paraoanu, Laura E. ; Layer, Paul G. (2008)
Acetylcholinesterase in cell adhesion, neurite growth and network formation.
In: The FEBS journal, 275 (4)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The expression of acetylcholinesterase is not restricted to cholinergically innervated tissues and relates to both neurotransmission and multiple biological aspects, including neural development, stress response and neurodegenerative diseases. Therefore, the classical function of acetylcholinesterase has to be distinguished from its non-classical, e.g. enzymatic from non-enzymatic, functions. Here, the roles of acetylcholinesterase in cell adhesion, promoting neurite outgrowth and neural network formation are reviewed briefly, together with potential mechanisms to support these functions. Part of these functions may depend on the structural properties of acetylcholinesterase, for example, protein-protein interactions. Recent findings have revealed that laminin-1 is an interaction partner for acetylcholinesterase. The binding of acetylcholinesterase to this extracellular matrix component may allow cell-to-cell recognition, and also cell signalling via membrane receptors. Studies using monolayer and 3D spheroid retinal cultures, as well as the acetylcholinesterase-knockout mouse, have been instrumental in elaborating the non-classical functions of acetylcholinesterase.

Typ des Eintrags: Artikel
Erschienen: 2008
Autor(en): Paraoanu, Laura E. ; Layer, Paul G.
Art des Eintrags: Bibliographie
Titel: Acetylcholinesterase in cell adhesion, neurite growth and network formation.
Sprache: Englisch
Publikationsjahr: 2008
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The FEBS journal
Jahrgang/Volume einer Zeitschrift: 275
(Heft-)Nummer: 4
Kurzbeschreibung (Abstract):

The expression of acetylcholinesterase is not restricted to cholinergically innervated tissues and relates to both neurotransmission and multiple biological aspects, including neural development, stress response and neurodegenerative diseases. Therefore, the classical function of acetylcholinesterase has to be distinguished from its non-classical, e.g. enzymatic from non-enzymatic, functions. Here, the roles of acetylcholinesterase in cell adhesion, promoting neurite outgrowth and neural network formation are reviewed briefly, together with potential mechanisms to support these functions. Part of these functions may depend on the structural properties of acetylcholinesterase, for example, protein-protein interactions. Recent findings have revealed that laminin-1 is an interaction partner for acetylcholinesterase. The binding of acetylcholinesterase to this extracellular matrix component may allow cell-to-cell recognition, and also cell signalling via membrane receptors. Studies using monolayer and 3D spheroid retinal cultures, as well as the acetylcholinesterase-knockout mouse, have been instrumental in elaborating the non-classical functions of acetylcholinesterase.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
?? fb10_zoologie ??
10 Fachbereich Biologie > Developmental Biology and Neurogenetics
Hinterlegungsdatum: 21 Nov 2011 10:49
Letzte Änderung: 05 Mär 2013 09:56
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen