Wieder, Thomas (2008)
The number of certain k-combinations of an n-set.
In: Applied Mathematical E-Notes, 8
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We will count the number of possible coalitions. In combinatorial terms we will count the number of k-combinations formed from an n-set under certain restrictions. In contrast to the usual definition of a coalition in quantitative sociology, our k-combination needs not to cover the entire set. We will discern among disjoint and conjoint k-combinations and among those with or without the empty set and the n-set itself as allowed subsets. Several relations to and among certain integer sequences will be outlined.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2008 |
Autor(en): | Wieder, Thomas |
Art des Eintrags: | Bibliographie |
Titel: | The number of certain k-combinations of an n-set |
Sprache: | Englisch |
Publikationsjahr: | 2008 |
Verlag: | Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Applied Mathematical E-Notes |
Jahrgang/Volume einer Zeitschrift: | 8 |
URL / URN: | http://www.math.nthu.edu.tw/~amen/ |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We will count the number of possible coalitions. In combinatorial terms we will count the number of k-combinations formed from an n-set under certain restrictions. In contrast to the usual definition of a coalition in quantitative sociology, our k-combination needs not to cover the entire set. We will discern among disjoint and conjoint k-combinations and among those with or without the empty set and the n-set itself as allowed subsets. Several relations to and among certain integer sequences will be outlined. |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften |
Hinterlegungsdatum: | 15 Sep 2011 13:24 |
Letzte Änderung: | 05 Mär 2013 09:54 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |