Greve, Ralf ; Wang, Yongqi ; Mügge, Bernd (2002)
Comparison of numerical schemes for the solution of the advective age equation in ice sheets.
In: Annals of Glaciology, 35 (1)
doi: 10.3189/172756402781817112
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
A one-dimensional model problem for computation of the age field in ice sheets, which is of great importance for dating deep ice cores, is considered. The corresponding partial differential equation (PDE) is of purely advective (hyperbolic) type, which is notoriously difficult to solve numerically. By integrating the PDE over a space-time element in the sense of a finite-volume approach, a general difference equation is constructed from which a hierarchy of solution schemes can be derived. Iteration rules are given explicitly for central differences, first-, second- and third-order (QUICK) upstreaming as well as modified TVD Lax-Friedrichs schemes (TVDLFs).The performance of these schemes in terms of convergence and accuracy is discussed. Second-order upstreaming, the modified TVDLF scheme with Minmod slope limiter and, with limitations of the accuracy directly at the base, first-order upstreaming prove to be the most suitable for numerical age computations in ice-sheet models.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2002 |
Autor(en): | Greve, Ralf ; Wang, Yongqi ; Mügge, Bernd |
Art des Eintrags: | Bibliographie |
Titel: | Comparison of numerical schemes for the solution of the advective age equation in ice sheets |
Sprache: | Englisch |
Publikationsjahr: | 1 Januar 2002 |
Verlag: | International Glacial Society |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Annals of Glaciology |
Jahrgang/Volume einer Zeitschrift: | 35 |
(Heft-)Nummer: | 1 |
DOI: | 10.3189/172756402781817112 |
URL / URN: | http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/34606... |
Kurzbeschreibung (Abstract): | A one-dimensional model problem for computation of the age field in ice sheets, which is of great importance for dating deep ice cores, is considered. The corresponding partial differential equation (PDE) is of purely advective (hyperbolic) type, which is notoriously difficult to solve numerically. By integrating the PDE over a space-time element in the sense of a finite-volume approach, a general difference equation is constructed from which a hierarchy of solution schemes can be derived. Iteration rules are given explicitly for central differences, first-, second- and third-order (QUICK) upstreaming as well as modified TVD Lax-Friedrichs schemes (TVDLFs).The performance of these schemes in terms of convergence and accuracy is discussed. Second-order upstreaming, the modified TVDLF scheme with Minmod slope limiter and, with limitations of the accuracy directly at the base, first-order upstreaming prove to be the most suitable for numerical age computations in ice-sheet models. |
Zusätzliche Informationen: | DOI: 10.3189/172756402781817112 |
Fachbereich(e)/-gebiet(e): | Studienbereiche 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy) Studienbereiche > Studienbereich Mechanik |
Hinterlegungsdatum: | 02 Sep 2011 13:09 |
Letzte Änderung: | 20 Feb 2019 14:52 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |