TU Darmstadt / ULB / TUbiblio

Prozesscharakterisierung Aufdampfanlage

Chatziandronis, Vasilios (2005):
Prozesscharakterisierung Aufdampfanlage.
Technische Universität Darmstadt, [Seminar paper (Midterm)]

Abstract

Zusammenfassung:

Das Institut für Elektromechanische Konstruktionen der TU Darmstadt besitzt eine Aufdampfanlage BAK 640 der Firma BALZERS mit einer vollautomatisierten Steuerung. Um diese Anlage benutzen zu können, sind genaue Prozesskenntnisse erforderlich.

Ziel dieser Studienarbeit ist es für die Werkstoffe Nickel, Aluminium, Kupfer und Chrom den Aufdampfprozess zu charakterisieren und zu dokumentieren. Hierfür ist es zunächst notwendig das Funktionsprinzip einer Aufdampfanlage und wichtige Zusammenhänge zu beschreiben, um anschließend definierte Versuchsreihen an der Aufdampfanlage durchführen zu können. Die Schichtdickenmessung erfolgt beispielsweise mittels Schwingquarzen, die sich in der Nähe der zu beschichtenden Substrate befinden. Da die Messung demnach nicht direkt auf den Substraten erfolgt, gibt es eine Abweichung zwischen gewünschter und tatsächlicher Schichtdicke, die über den sog. Tooling-Faktor an der Anlage eingestellt werden kann. Dieser Parameter wird in der Arbeit bestimmt, so wie auch die Homogenität der aufgedampften Schichten. Die Schichten werden mit einem Oberflächenprofiler vermessen. Weiter wird die maximale Quarzbelegung ermittelt, d.h. es wird die Schichtdicke bestimmt, die ein Quarz maximal noch messen kann. Nach genauer Prozesscharakterisierung haben sich die Parameter Substrattemperatur, Aufdampfrate und Schichtdicke als wichtigste Einflussfaktoren auf die Schichtqualität herauskristallisiert. Die untersuchten Parameterwerte sind in Tabelle 1 dargestellt.

Substrattemperatur[°C] Aufdampfrate[nm/s] Schichtdicke[nm]

200.................................0,3.........................100

250.................................0,4.........................300

300.................................0,5.........................500

Es sind zwar noch höhere Aufdampfraten als 0,5nm/s erreichbar, jedoch kommt es durch die zu hohe Leistung zu Spritzen im Aufdampftiegel was zu einer inhomogenen Schmelze führt. Die maximale Substrattemperatur liegt bei ca. 330°C. Größere Schichtdicken als 500nm werden nicht untersucht, da sich bei einer Rate von 0,3nm/s die Beschichtungszeit auf über 20 Minuten verlängert.

Diese Parameterwerte werden mit einem D-optimalen Versuchsplan bezüglich der Rauhigkeiten der aufgedampften Schichten untersucht und statistisch ausgewertet, wobei hier auch die Abhängigkeiten der Parameter untereinander deutlich werden. Die Programmierung und Auswertung erfolgt mit MATLAB.

Neben der Rauhigkeit und der Schichtdicke wird die Schichtqualität noch bezüglich ihrer Haftfestigkeit mittels dem Klebestreifentest ermittelt.

Item Type: Seminar paper (Midterm)
Erschienen: 2005
Creators: Chatziandronis, Vasilios
Title: Prozesscharakterisierung Aufdampfanlage
Language: German
Abstract:

Zusammenfassung:

Das Institut für Elektromechanische Konstruktionen der TU Darmstadt besitzt eine Aufdampfanlage BAK 640 der Firma BALZERS mit einer vollautomatisierten Steuerung. Um diese Anlage benutzen zu können, sind genaue Prozesskenntnisse erforderlich.

Ziel dieser Studienarbeit ist es für die Werkstoffe Nickel, Aluminium, Kupfer und Chrom den Aufdampfprozess zu charakterisieren und zu dokumentieren. Hierfür ist es zunächst notwendig das Funktionsprinzip einer Aufdampfanlage und wichtige Zusammenhänge zu beschreiben, um anschließend definierte Versuchsreihen an der Aufdampfanlage durchführen zu können. Die Schichtdickenmessung erfolgt beispielsweise mittels Schwingquarzen, die sich in der Nähe der zu beschichtenden Substrate befinden. Da die Messung demnach nicht direkt auf den Substraten erfolgt, gibt es eine Abweichung zwischen gewünschter und tatsächlicher Schichtdicke, die über den sog. Tooling-Faktor an der Anlage eingestellt werden kann. Dieser Parameter wird in der Arbeit bestimmt, so wie auch die Homogenität der aufgedampften Schichten. Die Schichten werden mit einem Oberflächenprofiler vermessen. Weiter wird die maximale Quarzbelegung ermittelt, d.h. es wird die Schichtdicke bestimmt, die ein Quarz maximal noch messen kann. Nach genauer Prozesscharakterisierung haben sich die Parameter Substrattemperatur, Aufdampfrate und Schichtdicke als wichtigste Einflussfaktoren auf die Schichtqualität herauskristallisiert. Die untersuchten Parameterwerte sind in Tabelle 1 dargestellt.

Substrattemperatur[°C] Aufdampfrate[nm/s] Schichtdicke[nm]

200.................................0,3.........................100

250.................................0,4.........................300

300.................................0,5.........................500

Es sind zwar noch höhere Aufdampfraten als 0,5nm/s erreichbar, jedoch kommt es durch die zu hohe Leistung zu Spritzen im Aufdampftiegel was zu einer inhomogenen Schmelze führt. Die maximale Substrattemperatur liegt bei ca. 330°C. Größere Schichtdicken als 500nm werden nicht untersucht, da sich bei einer Rate von 0,3nm/s die Beschichtungszeit auf über 20 Minuten verlängert.

Diese Parameterwerte werden mit einem D-optimalen Versuchsplan bezüglich der Rauhigkeiten der aufgedampften Schichten untersucht und statistisch ausgewertet, wobei hier auch die Abhängigkeiten der Parameter untereinander deutlich werden. Die Programmierung und Auswertung erfolgt mit MATLAB.

Neben der Rauhigkeit und der Schichtdicke wird die Schichtqualität noch bezüglich ihrer Haftfestigkeit mittels dem Klebestreifentest ermittelt.

Uncontrolled Keywords: Elektromechanische Konstruktionen, Mikro- und Feinwerktechnik, Aufdampfanlage, Dünnschichttechnologie, Prozessparameter, Schichtqualität, Versuchsplanung statistisch
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institute for Electromechanical Design
18 Department of Electrical Engineering and Information Technology > Institute for Electromechanical Design > Microtechnology and Electromechanical Systems
Date Deposited: 06 Sep 2011 15:42
Additional Information:

EMK-spezifische Daten:

Lagerort Dokument: Archiv EMK, Kontakt über Sekretariate,

Bibliotheks-Sigel: 17/24 EMKS 1571

Art der Arbeit: Studienarbeit

Beginn Datum: 18-10-2004

Ende Datum: 28-02-2005

Querverweis: keiner

Studiengang: Wirtschaftsingenieur Elektrotechnik und Informationstechnik (WI-ETiT)

Vertiefungsrichtung: Mikro- und Feinwerktechnik (MFT)

Abschluss: Diplom (WiET)

Identification Number: 17/24 EMKS 1571
Referees: Eicher, Dipl.-Ing. Dirk and Schlaak, Prof. Dr.- Helmut Friedrich
Related URLs:
Export:

Optionen (nur für Redakteure)

View Item View Item