TU Darmstadt / ULB / TUbiblio

Explicit series solution of a closure model for the Kármán-Howarth equation

Liu, Zeng ; Oberlack, Martin ; Grebenev, Vladimir N. ; Liao, Shi-Jun (2011)
Explicit series solution of a closure model for the Kármán-Howarth equation.
In: ANZIAM Journal
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The Homotopy Analysis Method (HAM) is applied to the nonlinear problem with ξ=0 : f(ξ)=1 and ξ \to +∞ : f(ξ) \to 0. The problem is associated with a closure model for the von Kármán-Howarth equation, in terms of the normalized two-point double velocity correlation in the limit of infinite Reynolds number. Though the latter differential equation admits no Lie point symmetry groups it is still integrable once for the values σ = 0 and σ = 4 by means of integrating factors. The case σ = 4 is the only case that is again integrable for the given boundary conditions. The key result is that for the generic case HAM is employed such that solutions for arbitrary σ are derived. By choosing the correct parameters in the frame of HAM, we obtain the explicit analytic solutions by recursive formulae with constant coefficients using some transformations of variables in order to deal with a polynomial type of equation. In the appendix, we prove that the Loitsyansky invariant is the conservation law for the asymptotic form of the original equation.

Typ des Eintrags: Artikel
Erschienen: 2011
Autor(en): Liu, Zeng ; Oberlack, Martin ; Grebenev, Vladimir N. ; Liao, Shi-Jun
Art des Eintrags: Bibliographie
Titel: Explicit series solution of a closure model for the Kármán-Howarth equation
Sprache: Englisch
Publikationsjahr: 2011
Verlag: Australian Mathematical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ANZIAM Journal
Kurzbeschreibung (Abstract):

The Homotopy Analysis Method (HAM) is applied to the nonlinear problem with ξ=0 : f(ξ)=1 and ξ \to +∞ : f(ξ) \to 0. The problem is associated with a closure model for the von Kármán-Howarth equation, in terms of the normalized two-point double velocity correlation in the limit of infinite Reynolds number. Though the latter differential equation admits no Lie point symmetry groups it is still integrable once for the values σ = 0 and σ = 4 by means of integrating factors. The case σ = 4 is the only case that is again integrable for the given boundary conditions. The key result is that for the generic case HAM is employed such that solutions for arbitrary σ are derived. By choosing the correct parameters in the frame of HAM, we obtain the explicit analytic solutions by recursive formulae with constant coefficients using some transformations of variables in order to deal with a polynomial type of equation. In the appendix, we prove that the Loitsyansky invariant is the conservation law for the asymptotic form of the original equation.

Freie Schlagworte: Homotopy analysis method; von Kármán-Howarth equation; solutions in closed form; conservation law
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy)
16 Fachbereich Maschinenbau
Hinterlegungsdatum: 24 Aug 2011 18:17
Letzte Änderung: 11 Feb 2014 18:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen