TU Darmstadt / ULB / TUbiblio

Efficient Voting Prediction for Pairwise Multilabel Classification

Loza Mencía, Eneldo ; Park, Sang-Hyeun ; Fürnkranz, Johannes (2009)
Efficient Voting Prediction for Pairwise Multilabel Classification.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The pairwise approach to multilabel classification reduces the problem to learning and aggregating preference predictions among the possible labels. A key problem is the need to query a quadratic number of preferences for making a prediction. To solve this problem, we extend the recently proposed QWeighted algorithm for efficient pairwise multiclass voting to the multilabel setting, and evaluate the adapted algorithm on several real-world datasets. We achieve an average-case reduction of classifier evaluations from n^2 to n + dn log n, where n is the total number of labels and d is the average number of labels, which is typically quite small in real-world datasets.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2009
Autor(en): Loza Mencía, Eneldo ; Park, Sang-Hyeun ; Fürnkranz, Johannes
Art des Eintrags: Bibliographie
Titel: Efficient Voting Prediction for Pairwise Multilabel Classification
Sprache: Englisch
Publikationsjahr: 2009
Verlag: d-side publications
Buchtitel: Proceedings of the 17th European Symposium on Artificial Neural Networks (ESANN-09)
URL / URN: http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es2009-...
Kurzbeschreibung (Abstract):

The pairwise approach to multilabel classification reduces the problem to learning and aggregating preference predictions among the possible labels. A key problem is the need to query a quadratic number of preferences for making a prediction. To solve this problem, we extend the recently proposed QWeighted algorithm for efficient pairwise multiclass voting to the multilabel setting, and evaluate the adapted algorithm on several real-world datasets. We achieve an average-case reduction of classifier evaluations from n^2 to n + dn log n, where n is the total number of labels and d is the average number of labels, which is typically quite small in real-world datasets.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Knowledge Engineering
Hinterlegungsdatum: 24 Jun 2011 14:50
Letzte Änderung: 26 Aug 2018 21:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen