TU Darmstadt / ULB / TUbiblio

Efficient Voting Prediction for Pairwise Multilabel Classification

Loza Mencía, Eneldo ; Park, Sang-Hyeun ; Fürnkranz, Johannes (2010)
Efficient Voting Prediction for Pairwise Multilabel Classification.
In: Neurocomputing, 73 (7-9)
doi: 10.1016/j.neucom.2009.11.024
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The pairwise approach to multilabel classification reduces the problem to learning and aggregating preference predictions among the possible labels. A key problem is the need to query a quadratic number of preferences for making a prediction. To solve this problem, we extend the recently proposed QWeighted algorithm for efficient pairwise multiclass voting to the multilabel setting, and evaluate the adapted algorithm on several real-world datasets. We achieve an average-case reduction of classifier evaluations from n^2 to n + n d log n, where n is the total number of possible labels and d is the average number of labels per instance, which is typically quite small in real-world datasets.

Typ des Eintrags: Artikel
Erschienen: 2010
Autor(en): Loza Mencía, Eneldo ; Park, Sang-Hyeun ; Fürnkranz, Johannes
Art des Eintrags: Bibliographie
Titel: Efficient Voting Prediction for Pairwise Multilabel Classification
Sprache: Englisch
Publikationsjahr: 2010
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Neurocomputing
Jahrgang/Volume einer Zeitschrift: 73
(Heft-)Nummer: 7-9
DOI: 10.1016/j.neucom.2009.11.024
Kurzbeschreibung (Abstract):

The pairwise approach to multilabel classification reduces the problem to learning and aggregating preference predictions among the possible labels. A key problem is the need to query a quadratic number of preferences for making a prediction. To solve this problem, we extend the recently proposed QWeighted algorithm for efficient pairwise multiclass voting to the multilabel setting, and evaluate the adapted algorithm on several real-world datasets. We achieve an average-case reduction of classifier evaluations from n^2 to n + n d log n, where n is the total number of possible labels and d is the average number of labels per instance, which is typically quite small in real-world datasets.

Freie Schlagworte: efficient classification, learning by pairwise comparison, multilabel classification, voting aggregation
Zusätzliche Informationen:

Advances in Computational Intelligence and Learning - 17th European Symposium on Artificial Neural Networks 2009, 17th European Symposium on Artificial Neural Networks 2009

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Knowledge Engineering
Hinterlegungsdatum: 24 Jun 2011 14:24
Letzte Änderung: 26 Aug 2018 21:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen