TU Darmstadt / ULB / TUbiblio

On the Two-Phase Navier-Stokes Equations with Boussinesq-Scriven Surface

Bothe, D. ; Prüss, J. (2010)
On the Two-Phase Navier-Stokes Equations with Boussinesq-Scriven Surface.
In: Fluid J. Math. Fluid Mech., 12 (1)
doi: 10.1007/s00021-008-0278-x
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Abstract. Two-phase ows with interface modeled as a Boussinesq- Scriven surface uid are analysed concerning their fundamental mathematical properties. This extended form of the common sharp-interface model for two-phase ows includes both surface tension and surface viscosity. For this system of partial differential equations with free interface it is shown that the energy serves as a strict Ljapunov functional, where the equilibria of the model without boundary contact consist of zero velocity and spheres for the dispersed phase. The linearizations of the problem are derived formally, showing that equilibria are linearly stable, but nonzero velocities may lead to problems which linearly are not wellposed. This phenomenon does not occur in absence of surface viscosity. The present paper aims at initiating a rigorous mathematical study of two-phase ows with surface viscosity.

Typ des Eintrags: Artikel
Erschienen: 2010
Autor(en): Bothe, D. ; Prüss, J.
Art des Eintrags: Bibliographie
Titel: On the Two-Phase Navier-Stokes Equations with Boussinesq-Scriven Surface
Sprache: Englisch
Publikationsjahr: 2010
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Fluid J. Math. Fluid Mech.
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 1
DOI: 10.1007/s00021-008-0278-x
Kurzbeschreibung (Abstract):

Abstract. Two-phase ows with interface modeled as a Boussinesq- Scriven surface uid are analysed concerning their fundamental mathematical properties. This extended form of the common sharp-interface model for two-phase ows includes both surface tension and surface viscosity. For this system of partial differential equations with free interface it is shown that the energy serves as a strict Ljapunov functional, where the equilibria of the model without boundary contact consist of zero velocity and spheres for the dispersed phase. The linearizations of the problem are derived formally, showing that equilibria are linearly stable, but nonzero velocities may lead to problems which linearly are not wellposed. This phenomenon does not occur in absence of surface viscosity. The present paper aims at initiating a rigorous mathematical study of two-phase ows with surface viscosity.

Freie Schlagworte: Navier-Stokes equations, surface tension, surface viscosity, equilibria, asymptotic behaviour, Ljapunov functionals, well-posedness, linearization.
Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Exzellenzcluster
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Analysis
04 Fachbereich Mathematik > Analysis > Mathematische Modellierung und Analysis
Zentrale Einrichtungen
Exzellenzinitiative > Exzellenzcluster > Center of Smart Interfaces (CSI)
04 Fachbereich Mathematik > Mathematische Modellierung und Analysis (MMA)
Hinterlegungsdatum: 05 Apr 2011 12:29
Letzte Änderung: 07 Feb 2024 11:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen