Bothe, D. ; Prüss, J. (2010)
On the Two-Phase Navier-Stokes Equations with Boussinesq-Scriven Surface.
In: Fluid J. Math. Fluid Mech., 12 (1)
doi: 10.1007/s00021-008-0278-x
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Abstract. Two-phase ows with interface modeled as a Boussinesq- Scriven surface uid are analysed concerning their fundamental mathematical properties. This extended form of the common sharp-interface model for two-phase ows includes both surface tension and surface viscosity. For this system of partial differential equations with free interface it is shown that the energy serves as a strict Ljapunov functional, where the equilibria of the model without boundary contact consist of zero velocity and spheres for the dispersed phase. The linearizations of the problem are derived formally, showing that equilibria are linearly stable, but nonzero velocities may lead to problems which linearly are not wellposed. This phenomenon does not occur in absence of surface viscosity. The present paper aims at initiating a rigorous mathematical study of two-phase ows with surface viscosity.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2010 |
Autor(en): | Bothe, D. ; Prüss, J. |
Art des Eintrags: | Bibliographie |
Titel: | On the Two-Phase Navier-Stokes Equations with Boussinesq-Scriven Surface |
Sprache: | Englisch |
Publikationsjahr: | 2010 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Fluid J. Math. Fluid Mech. |
Jahrgang/Volume einer Zeitschrift: | 12 |
(Heft-)Nummer: | 1 |
DOI: | 10.1007/s00021-008-0278-x |
Kurzbeschreibung (Abstract): | Abstract. Two-phase ows with interface modeled as a Boussinesq- Scriven surface uid are analysed concerning their fundamental mathematical properties. This extended form of the common sharp-interface model for two-phase ows includes both surface tension and surface viscosity. For this system of partial differential equations with free interface it is shown that the energy serves as a strict Ljapunov functional, where the equilibria of the model without boundary contact consist of zero velocity and spheres for the dispersed phase. The linearizations of the problem are derived formally, showing that equilibria are linearly stable, but nonzero velocities may lead to problems which linearly are not wellposed. This phenomenon does not occur in absence of surface viscosity. The present paper aims at initiating a rigorous mathematical study of two-phase ows with surface viscosity. |
Freie Schlagworte: | Navier-Stokes equations, surface tension, surface viscosity, equilibria, asymptotic behaviour, Ljapunov functionals, well-posedness, linearization. |
Fachbereich(e)/-gebiet(e): | Exzellenzinitiative Exzellenzinitiative > Exzellenzcluster 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Analysis 04 Fachbereich Mathematik > Analysis > Mathematische Modellierung und Analysis Zentrale Einrichtungen Exzellenzinitiative > Exzellenzcluster > Center of Smart Interfaces (CSI) 04 Fachbereich Mathematik > Mathematische Modellierung und Analysis (MMA) |
Hinterlegungsdatum: | 05 Apr 2011 12:29 |
Letzte Änderung: | 07 Feb 2024 11:55 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |