Fretter, Christoph ; Szejka, Agnes ; Drossel, Barbara (2009)
Perturbation propagation in random and evolved Boolean networks.
In: New Journal of Physics, 11 (3)
doi: 10.1088/1367-2630/11/3/033005
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2009 |
Autor(en): | Fretter, Christoph ; Szejka, Agnes ; Drossel, Barbara |
Art des Eintrags: | Bibliographie |
Titel: | Perturbation propagation in random and evolved Boolean networks |
Sprache: | Englisch |
Publikationsjahr: | 2009 |
Ort: | London |
Verlag: | IOP Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | New Journal of Physics |
Jahrgang/Volume einer Zeitschrift: | 11 |
(Heft-)Nummer: | 3 |
Kollation: | 13 Seiten |
DOI: | 10.1088/1367-2630/11/3/033005 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots. |
ID-Nummer: | Artikel-ID: 033005 |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) 05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) > Statistische Physik und komplexe Systeme |
Hinterlegungsdatum: | 27 Jan 2010 14:14 |
Letzte Änderung: | 07 Mär 2024 10:25 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Perturbation propagation in random and evolved Boolean networks. (deposited 05 Mär 2024 10:17)
- Perturbation propagation in random and evolved Boolean networks. (deposited 27 Jan 2010 14:14) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |